Skip to main content
Log in

Shock Fluctuations in Flat TASEP Under Critical Scaling

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider TASEP with two types of particles starting at every second site. Particles to the left of the origin have jump rate \(1\), while particles to the right have jump rate \(\alpha \). When \(\alpha <1\) there is a formation of a shock where the density jumps to \((1-\alpha )/2\). For \(\alpha <1\) fixed, the statistics of the associated height functions around the shock is asymptotically (as time \(t\rightarrow \infty \)) a maximum of two independent random variables as shown in Ferrari and Nejjar (Probab Theory Rel Fields 161:61–109, 2015). In this paper we consider the critical scaling when \(1-\alpha =a t^{-1/3}\), where \(t\gg 1\) is the observation time. In that case the decoupling does not occur anymore. We determine the limiting distributions of the shock and numerically study its convergence as a function of \(a\). We see that the convergence to \(F_\mathrm{GOE}^2\) occurs quite rapidly as \(a\) increases. The critical scaling is analogue to the one used in the last passage percolation to obtain the BBP transition processes (Baik et al. in Ann Probab 33:1643–1697, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In what follows we will not write the integer parts explicitly.

  2. An up-right path \(\pi =\{\pi (0),\ldots ,\pi (n)\}\) is a sequence of points of \(\mathbb {Z}^2\) such that \(\pi (i+1)-\pi (i)\in \{(1,0),(0,1)\}\), for \(i=0,\ldots ,n-1\).

  3. For a set \(S\), the notation \(\Gamma _{S}\) means a simple path anticlockwise oriented enclosing only poles of the integrand belonging to the set \(S\).

References

  1. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2006)

    Article  Google Scholar 

  2. Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017–1070 (2010)

    MATH  Google Scholar 

  3. Battles, Z., Trefethen, L.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16, 803–866 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79, 871–915 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bornemann, F., Ferrari, P.L., Prähofer, M.: The Airy\(_1\) process is not the limit of the largest eigenvalue in GOE matrix diffusion. J. Stat. Phys. 133, 405–415 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Borodin, A., Ferrari, P. L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the Airy\(_1\) process. Int. Math. Res. Papers (2007), rpm002

  8. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Borodin, A., Ferrari, P.L., Sasamoto, T.: Transition between Airy\(_1\) and Airy\(_2\) processes and TASEP fluctuations. Comm. Pure Appl. Math. 61, 1603–1629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borodin, A., Ferrari, P.L., Sasamoto, T.: Two speed TASEP. J. Stat. Phys. 137, 936–977 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. Corwin, I., Ferrari, P.L., Péché, S.: Limit processes of non-equilibrium TASEP. J. Stat. Phys. 140, 232–267 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ models. Ann. Inst. H. Poincaré Probab. Statist. 48, 134–150 (2012)

    Article  ADS  MATH  Google Scholar 

  14. Ferrari, P.A.: Shock fluctuations in asymmetric simple exclusion. Probab. Theory Relat. Fields 91, 81–101 (1992)

    Article  MATH  Google Scholar 

  15. Ferrari, P.A., Fontes, L.: Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22, 820–832 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferrari, P.L.: Slow decorrelations in KPZ growth. J. Stat. Mech. P07022 (2008)

  17. Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last-passage percolation models. Probab. Theory Rel. Fields 161, 61–109 (2015)

    Article  MathSciNet  Google Scholar 

  18. Ferrari, P.L., Spohn, H.: Last branching in directed last passage percolation. Markov Process. Relat. Fields 9, 323–339 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Gärtner, J., Presutti, E.: Shock fluctuations in a particle system. Ann. Inst. H. Poincaré A 53, 1–14 (1990)

    MATH  Google Scholar 

  20. Gravner, J., Tracy, C.A., Widom, H.: Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102, 1085–1132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harris, T.: Additive set-valued markov processes and pharical methods. Ann. Probab. 6, 355–378 (1878)

    Article  Google Scholar 

  22. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  ADS  MATH  Google Scholar 

  23. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  Google Scholar 

  24. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MATH  Google Scholar 

  26. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  27. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. van Beijeren, H.: Fluctuations in the motions of mass and of patterns in one-dimensional driven diffusive systems. J. Stat. Phys. 63, 47–58 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

P. L. Ferrari was supported by the German Research Foundation via the SFB 1060-B04 Project. P. Nejjar is grateful for the support of the Bonn International Graduate School (BIGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik L. Ferrari.

Appendix: Kernel \(K_a\) in Terms of Airy Functions

Appendix: Kernel \(K_a\) in Terms of Airy Functions

Here we give the explicit form of \(K_a\) that we used for the numerical evaluation of \(G_a\) and its statistics.

Lemma 3.6

Denote \(u_{i,a}=u_i+a\) we have (with the conjugation transferred to the diffusion part)

$$\begin{aligned}&K_a (u_1,\xi _1;u_2,\xi _2)\nonumber \\&\quad \mathop {=}\limits ^\mathrm{conj}-\frac{e^{\frac{2}{3}u_{1,a}^{3}+u_{1,a}\xi _1}}{e^{\frac{2}{3}u_{2,a}^{3}+u_{2,a}\xi _2}} \frac{e^{-(\xi _2-\xi _1)^{2}/(4(u_2-u_1))}}{\sqrt{4\pi (u_2-u_1)}}\mathbb {1}(u_2>u_1)\end{aligned}$$
(4.1)
$$\begin{aligned}&\qquad \quad +\int _{0}^{\infty }\mathrm {d}\lambda \mathrm {Ai}(\xi _1+u_{1,a}^{2}+\lambda )\mathrm {Ai}(\xi _2+u_{2,a}^2+\lambda )e^{\lambda (u_2-u_1)}\end{aligned}$$
(4.2)
$$\begin{aligned}&\qquad \quad +\int _{0}^{\infty }\mathrm {d}\lambda \mathrm {Ai}(\xi _1+u_{1,a}^{2}-\lambda )\mathrm {Ai}(\xi _2+u_{2,a}^2+\lambda )e^{\lambda (2a+u_1+u_2)}\end{aligned}$$
(4.3)
$$\begin{aligned}&\qquad \quad -\int _{0}^{\infty }\mathrm {d}\lambda \mathrm {Ai}(\xi _1+u_{1,a}^{2}+\lambda )\mathrm {Ai}(\xi _2+u_{2,a}^2+\lambda )e^{\lambda (4a+u_2-u_1)} \end{aligned}$$
(4.4)
$$\begin{aligned}&\qquad \quad +\int _{0}^{\infty }\mathrm {d}\lambda \mathrm {Ai}(\xi _1+u_{1,a}^{2}+\lambda )\mathrm {Ai}(\xi _2+u_{2,a}^2-\lambda )e^{\lambda (2a-u_1-u_2)}. \end{aligned}$$
(4.5)

Proof

The result is an easy computation that uses the identities

$$\begin{aligned}&\frac{-1}{2\pi \mathrm {i}}\int _{\delta +\mathrm {i}\mathbb {R}}\mathrm {d}v e^{v^{3}/3+xv^{2}+yv}=\mathrm {Ai}(x^{2}-y)e^{\frac{2}{3}x^{3}-xy},\nonumber \\&\quad \frac{1}{z}=\int _{0}^{\infty }\mathrm {d}\lambda e^{-\lambda z} \qquad (z \in \mathbb {C},\,{\text {Re}}(z)>0), \end{aligned}$$
(4.6)

for any \(\delta >\max \{0,x\}\). \(\square \)

Remark 3.7

Alternatively, via the identity (A.6) of [9], one has

$$\begin{aligned} (A.3)=&\ -\int _{-\infty }^{0}\mathrm {d}\lambda e^{\lambda (u_{2,a}+u_{1,a})}\mathrm {Ai}(\xi _1+u_{1,a}^{2}-\lambda )\mathrm {Ai}(\xi _2+u_{2,a}^{2}+\lambda )\nonumber \\&+2^{-1/3}\mathrm {Ai}\left( 2^{-1/3}(\xi _1+\xi _2)+2^{-4/3}(u_1-u_2)^{2}\right) e^{-\frac{1}{2}(u_{1,a}+u_{2,a})(\xi _2+u_{2,a}^{2}-\xi _1-u_{1,a}^{2})}, \end{aligned}$$
(4.7)

with an analogous formula for (4.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, P.L., Nejjar, P. Shock Fluctuations in Flat TASEP Under Critical Scaling. J Stat Phys 160, 985–1004 (2015). https://doi.org/10.1007/s10955-015-1208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1208-y

Keywords

Navigation