Skip to main content
Log in

Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where “surface fields” may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Waals, J.D.: Over de continuiteit van den gas en vloeistof toestand. Thesis, Leiden (1873)

  2. Gibbs, J.W.: The Scientific Papers of Willard Gibbs. Dover, New York (1961)

    Google Scholar 

  3. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  4. Frenkel, J.: Kinetic Theory of Liquids. Dover, New York (1955)

    Google Scholar 

  5. Zettlemoyer, A.C.: Nucleation. Dekker, New York (1969)

    Google Scholar 

  6. Abraham, F.F.: Homogeneous Nucleation Theory. Academic Press, New York (1974)

    Google Scholar 

  7. Binder, K., Stauffer, D.: Statistical theory of nucleation, coagulation and condensation. Adv. Phys. 25, 343–396 (1986)

    Article  ADS  Google Scholar 

  8. Binder, K.: Theory of first order phase transitions. Rep. Prog. Phys. 50, 783–859 (1987)

    Article  ADS  Google Scholar 

  9. Kashchiev, D.: Nucleation: Basic Theory with Applications. Butterworth-Heviemann, Oxford (2000)

    Google Scholar 

  10. MacDowell, L.G.: Formal study of nucleation as described by fluctuation theory. J. Chem. Phys. 119, 453–463 (2003)

    Article  ADS  Google Scholar 

  11. Nucleation, Compt. Rendus Physique 7 (2006). Special issue, edited by S. Balibar and J. Villain

  12. Binder, K.: Spinodal decomposition versus nucleation and growth. In: Puri, S., Wadhawan, V. (eds.) Kinetics of Phase Transitions, pp. 63–99. CRC Press, Boca Raton (2009). Chap. 2

    Chapter  Google Scholar 

  13. de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–860 (1985)

    Article  ADS  Google Scholar 

  14. Fisher, M.E.: Interface wandering in adsorbed and bulk phases, pure and impure. J. Chem. Soc. Faraday Trans. II 82, 1569 (1986)

    Article  Google Scholar 

  15. Sullivan, D.E., Telo da Gama, M.M.: Wetting transition and multilayer adsorption at fluid interfaces. In: Croxton, C. (eds.) Fluid Interfacial Phenomena, pp. 45–134. Wiley, New York (1986)

    Google Scholar 

  16. Dietrich, S.: Wetting phenomena. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. XII, pp. 1–218. Academic Press, London (1988)

  17. Evans, R.: Microscopic theories of simple fluids and their interfaces. In: Charvolin, J., Joanny, J.-F., Zinn-Justin, J. (eds.) Liquids at Interfaces, Les Houches Session XLVIII, pp. 1–98. Elsevier, Amsterdam (1990)

    Google Scholar 

  18. Schick, M.: Introduction to wetting phenomena. In: Charvolin, J., Joanny, J.-F., Zinn-Justin, J. (eds.) Liquids at Interfaces, Les Houches Session XLVIII, pp. 415–497. Elsevier, Amsterdam (1990)

    Google Scholar 

  19. Berg, J.C. (ed.) Wettability. Dekker, New York (1993)

    Google Scholar 

  20. Bonn, D., Ross, D.: Wetting transitions. Rep. Prog. Phys. 64, 1085 (2001)

    Article  ADS  Google Scholar 

  21. Safran, S.A.: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Westview Press, Boulder (2003)

    MATH  Google Scholar 

  22. de Gennes, P.G., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2003)

    Google Scholar 

  23. Binder, K., Landau, D.P., Müller, M.: Monte Carlo studies of wetting, interface localization, and capillary condensation. J. Stat. Phys. 110, 1411–1514 (2003)

    Article  MATH  Google Scholar 

  24. Clarke, D.R., Rühle, M., Tomsia, A.P. (eds.) Low and High-Temperature Wetting: State of the Art. Ann. Revs. Mater. Res., vol. 38. Annual Reviews, Pato Alto (2008)

    Google Scholar 

  25. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Ratley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009)

    Article  ADS  Google Scholar 

  26. Cahn, R., Haasen, P. (eds.) Physical Metallurgy. North-Holland, Amsterdam (1983)

    Google Scholar 

  27. Chernov, A.A., Müller-Krumbhaar, H. (eds.) Modern Theory of Crystal Growth. Springer, Berlin (1983)

    Google Scholar 

  28. Müller-Krumbhaar, H., Kurz, W., Brener, E.: Solidification. In: Kostorz, G. (ed.) Phase Transitions in Materials, pp. 81–170. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  29. Bertrand, E., Bonn, D., Broseta, D., Shahidzadeh, N., Ragil, K., Dobbs, H., Indekeu, J.O., Meunier, J.: Wetting of alkanes on water. J. Pet. Sci. Eng. 33, 217 (2002)

    Article  Google Scholar 

  30. Bergeron, V., Bonn, D., Martin, J.-Y., Vovelle, L.: Controlling droplet deposition with polymer additives. Nature (London) 405, 772 (2000)

    Article  ADS  Google Scholar 

  31. Tabeling, P.: Microfluids. EDP Sciences, Paris (2004)

    Google Scholar 

  32. Curtius, J.: Nucleation of atmospheric aerosol particles. C. R. Phys. 7, 1007–1045 (2006)

    Article  ADS  Google Scholar 

  33. Widom, B.: Surface tension of fluids. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. II, pp. 73–100. Academic Press, London (1972)

  34. Binder, K., Müller, M.: Computer simulation of profiles of interfaces between coexisting phases: do we understand their finite size effects. Int. J. Mod. Phys. C 11, 1093–1114 (2000)

    Article  ADS  Google Scholar 

  35. Köpf, M.H., Münster, G.: Interfacial roughening in field theory. J. Stat. Phys. 132, 417 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Buff, F.P., Lovett, R.A., Stillinger, F.H.: Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621 (1965)

    Article  ADS  Google Scholar 

  37. Weeks, J.D.: Structure and thermodynamics of the liquid-vapor interface. J. Chem. Phys. 67, 3106 (1977)

    Article  ADS  Google Scholar 

  38. Bedeaux, D., Weeks, J.D.: An experimental study of the in-plane distribution of atoms in the liquid-vapor interface of mercury. J. Chem. Phys. 82, 972 (1985)

    Article  ADS  Google Scholar 

  39. Sefiane, K.: Thoughts on some outstanding issues in the physics of equilibrium wetting and conceptual understanding of contact lines. Eur. Phys. J. Special Topics (2011, in press)

  40. Wang, J.Y., Betelu, S., Law, B.M.: Line tension effects near first-order wetting transitions. Phys. Rev. Lett. 83, 3677–3680 (1999)

    Article  ADS  Google Scholar 

  41. Pompe, T.: Line tension behavior of a first order wetting system. Phys. Rev. Lett. 83, 076102 (2002)

    Article  ADS  Google Scholar 

  42. Mugele, F., Becker, T., Nikopolous, R., Kohonen, M., Herminghaus, S.: Capillarity at the nanoscale: an AFM view. J. Adhes. Sci. Technol. 16, 951 (2002)

    Article  Google Scholar 

  43. Indekeu, J.O.: Line tension at wetting. Int. J. Mod. Phys. B 8, 309 (1994)

    Article  ADS  Google Scholar 

  44. Getta, T., Dietrich, S.: Line tension between fluid phases and a substrate. Phys. Rev. E 57, 655 (1998)

    Article  ADS  Google Scholar 

  45. Bauer, C., Dietrich, S.: Quantitative study of laterally inhomogeneous wetting films. Eur. Phys. J. B 10, 767–779 (1999)

    Article  ADS  Google Scholar 

  46. Schimmele, L., Napiorkowski, M., Dietrich, S.: Conceptual aspects of line tensions. J. Chem. Phys. 127, 164715 (2007)

    Article  ADS  Google Scholar 

  47. Ward, C.A., Wu, J.: Effect of contact line curvature on solid-fluid surface tensions without line tension. Phys. Rev. Lett. 100, 256103 (2008)

    Article  ADS  Google Scholar 

  48. Schimmele, L., Dietrich, S.: Line tensions and the shape of nanodroplets. Eur. Phys. J. E 30, 427–430 (2009)

    Article  Google Scholar 

  49. Navascues, G., Tarazona, P.: Line tension effects in heterogeneous nucleation theory. J. Chem. Phys. 77, 2441–2446 (1981)

    Article  ADS  Google Scholar 

  50. Schrader, M., Virnau, P., Winter, D., Zykova-Timan, T., Binder, K.: Methods to extract interfacial free energies of flat and curved interfaces from computer simulations. Eur. Phys. J. Special Topics 177, 103 (2009)

    Article  ADS  Google Scholar 

  51. Block, B.J., Das, S.K., Oettel, M., Virnau, P., Binder, K.: Curvature dependence of surface free energy of liquid drops and bubbles: a simulation study. J. Chem. Phys. 133, 154702 (2010)

    Article  ADS  Google Scholar 

  52. Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17, 333–337 (1949)

    Article  ADS  Google Scholar 

  53. Fisher, M.P.A., Wortis, M.: Curvature corrections to the surface tension of fluid drops: Landau theory and a scaling hypothesis. Phys. Rev. B 29, 652 (1984)

    Article  Google Scholar 

  54. ten Wolde, P.R. Frenkel, D.: Computer simulation study of gas-liquid nucleation in a Lennard-Jones system. J. Chem. Phys. 109, 9901–9918 (1998)

    Article  ADS  Google Scholar 

  55. Talanquer, V., Oxtoby, D.W.: Nucleation of bubbles in binary fluids. J. Chem. Phys. 99, 2865 (1995)

    Article  Google Scholar 

  56. Granasy, L.: Semi-empirical van der Waals/Cahn-Hilliard theory. Size dependence of the Tolman length. J. Chem. Phys. 109, 9660 (1998)

    Article  ADS  Google Scholar 

  57. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688 (1959)

    Article  ADS  Google Scholar 

  58. van Giessen, A.E., Blokhuis, E.M.: Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations. J. Chem. Phys. 131, 164705 (2009)

    Article  ADS  Google Scholar 

  59. Sampayo, J.G., Malijewsky, A., Müller, E.A., de Miguel, E., Jackson, G.: Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension. J. Chem. Phys. 132, 141101 (2010)

    Article  ADS  Google Scholar 

  60. Toxvaerd, S., Praestgaard, E.: Molecular dynamics calculation of the liquid structure up to a solid surface. J. Chem. Phys. 67, 5291 (1977)

    Article  ADS  Google Scholar 

  61. Cape, J.N., Woodcock, L.V.: Soft-sphere model for the crystal-liquid interface: a molecular dynamics calculation of the surface stress. J. Chem. Phys. 73, 2420 (1980)

    Article  ADS  Google Scholar 

  62. Broughton, J.Q., Gilmer, G.H.: Molecular dynamics investigation of the crystal-fluid interface. IV. Free energies of crystal-vapor systems. J. Chem. Phys. 84, 5741 (1986)

    Article  ADS  Google Scholar 

  63. Broughton, J.Q., Gilmer, G.H.: Molecular dynamics of the crystal-fluid interface. V. Structure and dynamics of crystal-melt systems. J. Chem. Phys. 84, 5749 (1986)

    Article  ADS  Google Scholar 

  64. Broughton, J.Q., Gilmer, G.H.: Molecular dynamics investigation of the crystal-fluid interface. VI. Excess surface free energies of crystal-liquid systems. J. Chem. Phys. 84, 5759 (1986)

    Article  ADS  Google Scholar 

  65. Meyer, M., Mareschal, M., Hayoun, M.: Computer modeling of a liquid-liquid interface. J. Chem. Phys. 89, 1067–1073 (1988)

    Article  ADS  Google Scholar 

  66. Laird, B.B., Haymet, A.D.J.: The crystal-liquid interface of a body-centered-cubic-forming substance: computer simulations of the r-6 potential. J. Chem. Phys. 91, 3638 (1989)

    Article  ADS  Google Scholar 

  67. Laird, B.B., Haymet, A.D.J.: The crystal/liquid interface: structure and properties from computer simulation. Chem. Rev. 92, 1819–1837 (1992)

    Article  Google Scholar 

  68. Davidchack, R.L., Laird, B.B.: Simulation of the hard-sphere crystal-melt interface. J. Chem. Phys. 108, 9452 (1998)

    Article  ADS  Google Scholar 

  69. Huitema, H.E.A., Viot, M.J., van der Eerden, J.P.: Simulations of crystal growth from Lennard-Jones melt: detailed measurements of the interface structure. J. Chem. Phys. 111, 4714–4723 (1999)

    Article  ADS  Google Scholar 

  70. Davidchack, R.L., Laird, B.B.: Direct calculation of the hard-sphere crystal/melt interfacial free energy. Phys. Rev. Lett. 85, 4751–4754 (2000)

    Article  ADS  Google Scholar 

  71. Mu, Y., Houk, A., Song, X.: Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. J. Phys. Chem. B 109, 6500 (2005)

    Article  Google Scholar 

  72. Davidchack, R.L., Morris, J.R., Laird, B.B.: The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710 (2006)

    Article  ADS  Google Scholar 

  73. Wu, K.-A., Karma, A., Hoyt, J.J., Asta, M.: Ginzburg-Landau theory of crystalline anisotropy for bcc-liquid interfaces. Phys. Rev. B 73, 094101 (2006)

    Article  ADS  Google Scholar 

  74. Buta, D., Asta, M., Hoyt, J.J.: Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface. Phys. Rev. E 78, 031605 (2008)

    Article  ADS  Google Scholar 

  75. Becker, C.A., Olmsted, D.L., Asta, M., Hoyt, J.J., Foiles, C.M.: Atomistic simulations of crystal-melt interfaces in a model binary alloy: interfacial free energies, adsorption coefficients, and excess entropy. Phys. Rev. B 79, 054109 (2009)

    Article  ADS  Google Scholar 

  76. Zykova-Timan, T., Rozas, R.E., Horbach, J., Binder, K.: Computer simulation studies of finite size broadening of solid-liquid interfaces: from hard spheres to nickel. J. Phys., Condens. Matter 21, 464102 (2009)

    Article  ADS  Google Scholar 

  77. Zykova-Timan, T., Horbach, J., Binder, K.: Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures. J. Chem. Phys. 133, 014705 (2010)

    Article  ADS  Google Scholar 

  78. Rozas, R.E., Horbach, J.: Capillary wave analysis of rough solid-liquid interfaces in Nickel, EPL (2011, in press)

  79. Schmid, F., Binder, K.: Rough interfaces in a bcc-based binary alloy. Phys. Rev. B 46, 13553–13564 (1992)

    Article  ADS  Google Scholar 

  80. Müller, M., Binder, K., Oed, W.: Structural and thermodynamic properties of interfaces between coexisting phases in polymer blends: a Monte Carlo investigation. J. Chem. Soc. Faraday Trans. 91, 2369–2379 (1995)

    Article  Google Scholar 

  81. Binder, K.: Monte Carlo simulations of surfaces and interfaces in materials. In: Gonis, A., Turchi, P.A., Kudrnovsky, J. (eds.) Stability of Materials, pp. 3–37. Plenum Press, New York (1996)

    Google Scholar 

  82. Kerle, T., Klein, J., Binder, K.: Evidence for size effects on interfacial widths in confined thin films. Phys. Rev. Lett. 77, 1317–1321 (1996)

    Article  ADS  Google Scholar 

  83. Werner, A., Schmid, F., Müller, M., Binder, K.: Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin film geometry: a Monte Carlo simulation. J. Chem. Phys. 107, 8175–8188 (1997)

    Article  ADS  Google Scholar 

  84. Kerle, T., Klein, J., Binder, K.: Effects of finite thickness on interfacial widths in confined films of coexisting phases. Eur. Phys. J. B 7, 401–410 (1999)

    Article  ADS  Google Scholar 

  85. Werner, A., Schmid, F., Müller, M., Binder, K.: Intrinsic profiles and capillary waves at homopolymer interfaces: a Monte Carlo study. Phys. Rev. E 59, 728–738 (1999)

    Article  ADS  Google Scholar 

  86. Binder, K., Müller, M., Schmid, F., Werner, A.: Interfacial profiles between coexisting phases in thin polymer films: Cahn-Hilliard treatment versus capillary waves. J. Stat. Phys. 95, 1045–1068 (1999)

    Article  MATH  ADS  Google Scholar 

  87. Binder, K., Müller, M., Schmid, F., Werner, A.: “Intrinsic” profiles and capillary waves at interfaces between coexisting phases in polymer blends. Adv. Colloid Interface Sci. 94, 237–248 (2001)

    Article  Google Scholar 

  88. Vink, R.L.C., Horbach, J., Binder, K.: Capillary waves in a colloid-polymer interface. J. Chem. Phys. 122, 134905 (2005)

    Article  ADS  Google Scholar 

  89. Bürkner, E., Stauffer, D.: Z. Phys. B 53, 241 (1983)

    Article  ADS  Google Scholar 

  90. Mon, K.K., Wansleben, S., Landau, D.P., Binder, K.: Monte Carlo studies of anisotropic surface tension and interfacial roughening in the three-dimensional Ising model. Phys. Rev. B 39, 7089–7096 (1989)

    Article  ADS  Google Scholar 

  91. Hasenbusch, M., Pinn, K.: Surface tension, surface stiffness, and surface width of the 3-dimensional Ising model on a cubic lattice. Physica A 192, 342–372 (1993)

    Article  ADS  Google Scholar 

  92. Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Clarendon, Oxford (1982)

    Google Scholar 

  93. Binder, K., Landau, D.P.: Wetting versus layering near the roughening transition in the 3d Ising model. Phys. Rev. B 46, 4844–4854 (1992)

    Article  ADS  Google Scholar 

  94. Albano, E.V., Binder, K.: Phase coexistence in nanoscopically thin films confined by asymmetric walls. J. Stat. Phys. 135, 991–1008 (2009)

    Article  ADS  MATH  Google Scholar 

  95. Winter, D., Virnau, P., Binder, K.: Heterogeneous nucleation at a wall near a wetting transition: Monte Carlo test of the classical theory. J. Phys., Condens. Matter 21, 464118 (2009)

    Article  ADS  Google Scholar 

  96. Binder, K., Hohenberg, P.C.: Phase transitions and static spin correlations in Ising models with free surfaces. Phys. Rev. B 6, 3461–3487 (1972)

    Article  ADS  Google Scholar 

  97. Binder, K., Hohenberg, P.C.: Surface effects on magnetic phase transitions. Phys. Rev. B 9, 2194–2214 (1974)

    Article  ADS  Google Scholar 

  98. Hohenberg, P.C., Binder, K.: Magnetic ordering and critical behavior near surfaces. AIP Conf. Proc. 24, 300–303 (1975)

    Article  ADS  Google Scholar 

  99. Binder, K.: Critical behavior at surfaces. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 8, pp. 1–144. Academic Press, London (1973)

  100. Winter, D., Virnau, P., Binder, K.: Monte Carlo test of the classical theory for heterogeneous nucleation barriers. Phys. Rev. Lett. 103, 225703 (2009)

    Article  ADS  Google Scholar 

  101. Das, S.K., Binder, K.: Does Young’s equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid. Europhys. Lett. 92, 26006 (2010)

    Article  ADS  Google Scholar 

  102. Das, S.K., Binder, K.: Simulations of binary fluids exposed to selectively adsorbing walls: a method to estimate contact angles and line tensions. Molec. Phys. 109, 1043–1056 (2011)

    Article  ADS  Google Scholar 

  103. Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 23, 185–199 (1977)

    Article  ADS  Google Scholar 

  104. Frenkel, D., Smit, B.: Understanding Molecular Simulation. From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2002)

    Google Scholar 

  105. Virnau, P., Müller, M.: Calculation of free energy through successive umbrella sampling. J. Chem. Phys. 120, 10925 (2004)

    Article  ADS  Google Scholar 

  106. Berg, B.A., Neuhaus, T.: Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys. Rev. Lett. 68, 9–12 (1992)

    Article  ADS  Google Scholar 

  107. Berg, B.A., Hansmann, U.H., Neuhaus, T.: Properties of interfaces in the two- and three-dimensional Ising model. Z. Phys. B 90, 229–239 (1993)

    Article  ADS  Google Scholar 

  108. Berg, B.A., Hansmann, U.H., Neuhaus, T.: Simulation of an ensemble with varying magnetic field: a numerical determination of the order-order interface tension of the D=2 Ising model. Phys. Rev. B 47, 497–500 (1993)

    Article  ADS  Google Scholar 

  109. Berg, B.A.: Generalized ensemble simulations for complex systems. Comput. Phys. Commun. 147, 52–57 (2002)

    Article  ADS  MATH  Google Scholar 

  110. Berg, B.A.: Multicanonical simulations step by step. Comput. Phys. Commun. 153, 397–406 (2003)

    Article  ADS  MATH  Google Scholar 

  111. Berg, B.A.: Markov Chain Monte Carlo Simulations and Their Statistical Analysis. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  112. Wang, F., Landau, D.P.: Efficient multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 88, 2050–2053 (2001)

    Article  ADS  Google Scholar 

  113. Wang, F., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101 (2001)

    Article  ADS  Google Scholar 

  114. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulation in Statistical Physics, 3rd edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  115. Binder, K., Heermann, D.W.: Monte Carlo Simulation in Statistical Physics. An Introduction, 5th edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  116. Binder, K.: Monte Carlo calculation of the surface tension for two- and three-dimensional lattice gas models. Phys. Rev. A 25, 1699–1709 (1982)

    Article  ADS  Google Scholar 

  117. Hunter, J.E., Reinhardt, W.P.: Finite size scaling behavior of the free energy barrier between coexisting phases: determination of the critical temperature and interfacial tension of the Lennard-Jones fluid. J. Chem. Phys. 103, 8627 (1995)

    Article  ADS  Google Scholar 

  118. Potoff, J.J., Panagiotopoulos, A.Z.: Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations. J. Chem. Phys. 112, 6411 (2000)

    Article  ADS  Google Scholar 

  119. Errington, J.R.: Phys. Rev. E 67, 612102 (2003)

    Article  ADS  Google Scholar 

  120. Virnau, P., Müller, M., MacDowell, L.G., Binder, K.: Phase behavior of n-alkanes in supercritical solution: a Monte Carlo study. J. Chem. Phys. 121, 2169–2179 (2004)

    Article  ADS  Google Scholar 

  121. Vink, R.L.C., Horbach, J., Binder, K.: Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibilities, and coexistence diameter. Phys. Rev. E 71, 011401 (2005)

    Article  ADS  Google Scholar 

  122. Mognetti, B.M., Yelash, L., Virnau, P., Paul, W., Binder, K., Müller, M., MacDowell, L.G.: Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model. The case of carbon dioxide. J. Chem. Phys. 128, 104501 (2008)

    Article  ADS  Google Scholar 

  123. Mognetti, B.M., Virnau, P., Yelash, L., Paul, W., Binder, K., Müller, M., MacDowell, L.G.: Coarse-grained models for fluids and their mixtures: comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. J. Chem. Phys. 130, 044101 (2009)

    Article  ADS  Google Scholar 

  124. Turnbull, D.: Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022 (1950)

    Article  ADS  Google Scholar 

  125. Binder, K., Stauffer, D.: A simple introduction to Monte Carlo simulation and some specialized topics. In: Binder, K. (ed.) Application of the Monte Carlo Method in Statistical Physics, pp. 1–36. Springer, Berlin (1984)

    Google Scholar 

  126. Schweika, W., Landau, D.P., Binder, K.: Surface induced ordering and disordering in face-centered cubic alloys: a Monte Carlo study. Phys. Rev. B 53, 8937–8955 (1996)

    Article  ADS  Google Scholar 

  127. Schultz, B.J., Dünweg, B., Binder, K., Müller, M.: Suppression of capillary wave broadening of interfaces in binary alloys due to elastic interactions. Phys. Rev. Lett. 95, 096101 (2005)

    Article  ADS  Google Scholar 

  128. Frenkel, D., Ladd, A.J.C.: New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, 3188 (1984)

    Article  ADS  Google Scholar 

  129. Asakura, S., Oosawa, F.: Surface tension of high-polymer solutions. J. Chem. Phys. 22, 1255 (1954)

    ADS  Google Scholar 

  130. de Virgiliis, A., Vink, R.L.C., Horbach, J., Binder, K.: From capillary condensation to interface localization transitions in colloid polymer mixtures confined in thin film geometry. Phys. Rev. E 78, 041604 (2008)

    Article  ADS  Google Scholar 

  131. Alejandre, J., Tildesley, D.J., Chapela, G.A.: Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys. 102, 4574 (1995)

    Article  ADS  Google Scholar 

  132. Weeks, J.D.: The roughening transition. In: Riste, T. (ed.) Ordering in Strongly Fluctuating Condensed Matter Systems, pp. 293–317. Plenum, New York (1980)

    Google Scholar 

  133. Jasnow, D.: Critical phenomena at interfaces. Rep. Prog. Phys. 47, 1059 (1984)

    Article  ADS  Google Scholar 

  134. Wulff, G., Kristallogr, Z.: Mineral. 34, 449 (1901)

    Google Scholar 

  135. Pawley, G.S., Swendsen, R.H., Wallace, J., Wilson, K.G.: Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising model. Phys. Rev. B 29, 4030–4040 (1984)

    Article  ADS  Google Scholar 

  136. Privman, V.: Fluctuating interfaces, surface tension, and capillary waves: an introduction. Int. J. Mod. Phys. C 3, 857 (1992)

    Article  ADS  Google Scholar 

  137. Binder, K., Landau, D.P.: Wetting and layering in the nearest-neighbor simple cubic Ising lattice: a Monte Carlo investigation. Phys. Rev. B 37, 1745–1766 (1988)

    Article  ADS  Google Scholar 

  138. Binder, K., Landau, D.P., Wansleben, S.: Wetting transitions near the bulk critical point: Monte Carlo simulations for the Ising model. Phys. Rev. B 40, 6971–6979 (1989)

    Article  ADS  Google Scholar 

  139. Winter, D.: Diplomarbeit. Johannes Gutenberg Universität Mainz (2009, unpublished)

  140. Hasenbusch, M., Pinn, K.: Comparison of Monte Carlo results for the 3D Ising interface tension and interface energy with (extrapolated) series expansion. Physica A 203, 189–213 (1994)

    Article  ADS  Google Scholar 

  141. Das, S.K., Horbach, J., Binder, K., Fisher, M.E., Sengers, J.V.: Static and dynamic critical behavior of a symmetrical binary fluid: a computer simulation. J. Chem. Phys. 125, 024506 (2006)

    Article  ADS  Google Scholar 

  142. Müller, M., Binder, K.: Wetting and capillary condensation in symmetric polymer blends: a comparison between Monte Carlo simulations and self-consistent field calculations. Macromolecules 31, 8323–8346 (1998)

    Article  ADS  Google Scholar 

  143. Bucior, K., Yelash, L., Binder, K.: Molecular dynamics simulation of evaporation processes of fluid bridges confined in slit-like pores. Phys. Rev. E 79, 031604 (2009)

    Article  ADS  Google Scholar 

  144. Dimitrov, D.I., Milchev, A., Binder, K.: Method for wettability characterization based on contact line pinning. Phys. Rev. E 81, 041603 (2010)

    Article  ADS  Google Scholar 

  145. Virnau, P., Müller, M., MacDowell, L.G., Binder, K.: Phase diagrams of hexadecane-CO2 mixtures from histogram-reweighting Monte Carlo. Comput. Phys. Commun. 147, 222–225 (2002)

    Article  Google Scholar 

  146. Binder, K., Landau, D.P.: Finite size scaling at first-order phase transitions. Phys. Rev. B 30, 1477–1485 (1984)

    Article  ADS  Google Scholar 

  147. Bongs, C., Kotecky, R.: A rigorous theory of finite-size scaling at first-order phase transitions. J. Stat. Phys. 61, 79–119 (1990)

    Article  ADS  Google Scholar 

  148. MacDowell, L.G., Virnau, P., Müller, M., Binder, K.: The evaporation/condensation transition of liquid droplets. J. Chem. Phys. 120, 5293 (2004)

    Article  ADS  Google Scholar 

  149. MacDowell, L.G., Shen, V.C., Errington, J.R.: Nucleation and cavitation of spherical, cylindrical and slab-like droplets and bubbles in small systems. J. Chem. Phys. 125, 034705 (2006)

    Article  ADS  Google Scholar 

  150. Onsager, L.: Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  151. Schrader, M., Virnau, P., Binder, K.: Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets. Phys. Rev. E 79, 061104 (2009)

    Article  ADS  Google Scholar 

  152. Block, B.J.: Diplomarbeit. Johannes Gutenberg Universität Mainz (2010, unpublished)

  153. Binder, K., Kalos, M.H.: Critical clusters in a supersaturated vapor: theory and Monte Carlo simulation. J. Stat. Phys. 22, 363–396 (1980)

    Article  ADS  Google Scholar 

  154. Binder, K.: Theory of the evaporation/condensation transition of equilibrium droplets in finite volumes. Physica A 319, 99–114 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  155. Biskup, M., Chayes, L., Kotecky, R.: On the formation/dissolution of equilibrium droplets. Europhys. Lett. 60, 21–27 (2002)

    Article  ADS  Google Scholar 

  156. Anisimov, M.A.: Divergence of Tolman’s length for a droplet near the critical point. Phys. Rev. Lett. 98, 035702 (2007)

    Article  ADS  Google Scholar 

  157. Iwamatsu, M.: The surface tension and Tolmans’s length of a drop. J. Phys., Condens. Matter 6, L173–177 (1994)

    Article  ADS  Google Scholar 

  158. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  ADS  Google Scholar 

  159. Tröster, A., Block, B., Oettel, M., Virnau, P., Binder, K.: Numerical approaches to determine the interface tension of curved interfaces from free energy calculations. Preprint

  160. van Swol, F., Henderson, J.R.: Wetting and drying transitions at a fluid-wall interface: density functional theory versus computer simulation. Phys. Rev. A 40, 2567–2578 (1989)

    Article  ADS  Google Scholar 

  161. van Swol, F., Henderson, J.R.: Wetting and drying transitions of a fluid-wall interface: density functional theory versus computer simulation II. Phys. Rev. A 43, 2932–2942 (1989)

    Article  Google Scholar 

  162. Sikkenk, J.H., Indekeu, J.O., van Leeuven, J.M.J., Vossnack, E.O., Bakker, A.F.: Simulation of wetting and drying at solid-fluid interfaces on the Delft Molecular Dynamics Processor. J. Stat. Phys. 52, 22–44 (1988)

    Article  ADS  Google Scholar 

  163. Henderson, J.R.: Statistical mechanics of the disjoining pressure of a planar film. Phys. Rev. E 72, 051602 (2005)

    Article  ADS  Google Scholar 

  164. Herring, A.R., Henderson, J.R.: Simulation study of the disjoining pressure profile through a three-phase contact line. J. Chem. Phys. 132, 084702 (2010)

    Article  ADS  Google Scholar 

  165. Djikaev, Y., Widom, B.: Geometric view of the thermodynamics of adsorption at a line of three-phase contact. J. Chem. Phys. 121, 5602–5610 (2004)

    Article  ADS  Google Scholar 

  166. Milchev, A., Binder, K.: Polymer melt droplets adsorbed on a solid wall: a Monte Carlo simulation. J. Chem. Phys. 115, 983–993 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, K., Block, B., Das, S.K. et al. Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions. J Stat Phys 144, 690–729 (2011). https://doi.org/10.1007/s10955-011-0226-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0226-7

Keywords

Navigation