Skip to main content
Log in

Hydrodynamic Limit for a Boundary Driven Stochastic Lattice Gas Model with Many Conserved Quantities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the hydrodynamic limit for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beltrán, J., Landim, C.: A lattice gas model for the incompressible Navier-Stokes equation. Ann. Inst. Henri Poincaré, Probab. Stat. 44, 886–914

  2. Benois, O., Kipnis, C., Landim, C.: Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stoch. Proc. Appl. 55, 65–89 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardin, C.: Stationary nonequilibrium properties for a heat conduction model. Phys. Rev. E 78, 021134 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. 37, 611–643 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertini, L., De Sole, A., Gabrielli, G., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp. 7, P07014 (2007) (electronic)

    Article  Google Scholar 

  6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  7. Derrida, B.: Non equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. P07023 (2007)

  8. Esposito, R., Marra, R., Yau, H.T.: Navier-Stokes equations for stochastic particle systems on the lattice. Commun. Math. Phys. 182, 395–456 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Eyink, G., Lebowitz, J.L., Spohn, H.: Hydrodynamics of stationary nonequilibrium states for some lattice gas models. Commun. Math. Phys. 132, 253–283 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Eyink, G., Lebowitz, J.L., Spohn, H.: Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state. Commun. Math. Phys. 140, 119–131 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Farfan, J., Landim, C., Mourragui, M.: Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion. Preprint. 0903.5526

  12. Farfan, J., Simas, A.B., Valentim, F.J.: Dynamical large deviation for a boundary driven stochastic lattice gas model with many conserved quantities. Preprint arXiv:0911.4425

  13. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  14. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren Math. Wiss., vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  15. Kipnis, C., Landim, C., Olla, S.: Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system. Ann. Inst. Henri Poincaré, Probabilités 31, 191–221 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Rhode Island (1968)

    Google Scholar 

  17. Landim, C., Olla, S., Volchan, S.B.: Driven tracer particle in one dimensional symmetric simple exclusion. Commun. Math. Phys. 192, 287–307 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Landim, C., Mourragui, M., Sellami, S.: Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs. Theory Probab. Appl. 45, 604–623 (2001)

    Article  MathSciNet  Google Scholar 

  19. Oleinik, O.A., Kruzhkov, S.N.: Quasi-linear second order parabolic equations with many independent variables. Russ. Math. Surv. 16, 105–146 (1961)

    Article  Google Scholar 

  20. Quastel, J., Yau, H.T.: Lattice gases large deviations, and the incompressible Navier-Stokes equations. Ann. Math. 148, 51–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  22. Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Stat. Phys. A, Math. Gen. 16, 4275–4291 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre B. Simas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simas, A.B. Hydrodynamic Limit for a Boundary Driven Stochastic Lattice Gas Model with Many Conserved Quantities. J Stat Phys 139, 219–251 (2010). https://doi.org/10.1007/s10955-010-9932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9932-9

Keywords

Navigation