Skip to main content

Advertisement

Log in

The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Numerical evidence on the relevance of the initial conditions to the Fermi-Pasta-Ulam problem is reported, supported by analytic estimates. In particular, we analyze the special, crucial role played by the phases of the low frequency normal modes initially excited, their energy being the same. The results found are the following. When the phases of the initially excited modes are randomly chosen, the parameter ruling the first stage of the transfer of energy to higher frequency modes turns out to be the energy per degree of freedom (or specific energy) of the system, i.e. an intensive parameter. On the other hand, if the initial phases are “coherently” selected (e.g. they are all equal or equispaced on the unit circle), then the energy cascade is ruled by the total energy of the system, i.e. an extensive parameter. Finally, when a few modes are initially excited, in which case specifying the randomness or coherence of the phases becomes meaningless, the relevant parameter turns out to be again the specific energy (this is the case of the original Fermi-Pasta-Ulam experiment).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fermi, E., Pasta, J., Ulam, S.: Studies of non linear problems, Los-Alamos internal report, document LA-1940 (1955). In: Enrico Fermi Collected Papers, vol. II, pp. 977–988. University of Chicago Press/Accad. Naz. Lincei, Chicago/Roma (1965). (Also reproduced in  [3])

    Google Scholar 

  2. Berman, G.P., Izrailev, F.M.: The “Fermi–Pasta–Ulam” problem—the first 50 years. Chaos 15, 015104 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gallavotti, G. (ed.): The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi–Pasta–Ulam model. Phys. Rev. A 31, 1039–1045 (1985)

    Article  ADS  Google Scholar 

  5. Goedde, C.G., Lichtenberg, A.J., Lieberman, M.A.: Chaos and the approach to equilibrium in a discrete Sine-Gordon equation. Physica D 59, 200–225 (1992)

    MATH  ADS  MathSciNet  Google Scholar 

  6. De Luca, J., Lichtenberg, A.J., Ruffo, S.: Energy transition and time scales to equipartition in the Fermi–Pasta–Ulam oscillator chain. Phys. Rev. E 51, 2877–2885 (1995)

    ADS  Google Scholar 

  7. Fucito, E., Marchesoni, F., Marinari, E., Parisi, G., Peliti, L., Ruffo, S., Vulpiani, A.: Approach to equilibrium in a chain of nonlinear oscillators. J. Phys. 43, 707–713 (1982)

    MathSciNet  Google Scholar 

  8. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Relaxation to different stationary states in the Fermi-Pasta-Ulam model. Phys. Rev. A 28, 3544–3552 (1983)

    Article  ADS  Google Scholar 

  9. Pettini, M., Landolfi, M.: Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics. Phys. Rev. A 41, 768–783 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Berchialla, L., Giorgilli, A., Paleari, S.: Esponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A 321, 167–172 (2004)

    Article  MATH  ADS  Google Scholar 

  11. Berchialla, L., Galgani, L., Giorgilli, A.: Localization of energy in FPU chains. Discrete Contin. Dyn. Syst. Ser. A 11, 855–866 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Biello, J.A., Kramer, P.R., L’vov, Y.V.: Stages of energy transfer in the FPU model. Discrete Contin. Dyn. Syst. 2003(Suppl.), 113–122 (2003). (Special number devoted to the Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, 24–27 May 2002, Wilmington, NC)

    MATH  MathSciNet  Google Scholar 

  13. Benettin, G., Carati, A., Galgani, L., Giorgilli, A.: The Fermi–Pasta–Ulam problem and the metastability perspective. In: Gallavotti, G. (ed.) The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728, pp. 151–189. Springer, Berlin (2008)

    Chapter  Google Scholar 

  14. Izrailev, F.M., Chirikov, B.V.: Statistical properties of a nonlinear string. Sov. Phys. Dokl. 11, 30–32 (1966)

    ADS  Google Scholar 

  15. Kantz, H., Livi, R., Ruffo, S.: Equipartition thresholds in chains of anharmonic oscillators. J. Stat. Phys. 76, 627–643 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lichtenberg, A.J., Livi, R., Pettini, M., Ruffo, S.: Dynamics of oscillator chains. In: Gallavotti, G. (ed.) The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728, pp. 21–121. Springer, Berlin (2008)

    Chapter  Google Scholar 

  17. Shepelyansky, D.L.: Low-energy chaos in the Fermi-Pasta-Ulam problem. Nonlinearity 10, 1331–1338 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Ponno, A.: A theory of the energy cascade in FPU models. Preprint (2008)

  19. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  Google Scholar 

  20. Bambusi, D., Ponno, A.: On metastability in FPU. Commun. Math. Phys. 264, 539–561 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Bambusi, D., Ponno, A.: Resonance, metastability and blow-up in FPU. In: Gallavotti, G. (ed.) The Fermi-Pasta-Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728, pp. 191–205. Springer, Berlin (2008)

    Chapter  Google Scholar 

  22. Ponno, A.: Soliton theory and the Fermi-Pasta-Ulam problem in the thermodynamic limit. Europhys. Lett. 64, 606–612 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ponno, A.: The Fermi-Pasta-Ulam problem in the thermodynamic limit: scaling laws of the energy cascade. In: Collet, P., et al. (eds.) Proceedings of the Cargèse Summer School 2003 on Chaotic Dynamics and Transport in Classical and Quantum Systems, pp. 431–440. Kluwer Academic, Dordrecht (2005)

    Chapter  Google Scholar 

  24. Flach, S., Ponno, A.: The Fermi-Pasta-Ulam problem: Periodic orbits, normal forms and resonance overlap criteria. Physica D 237, 908–917 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Ford, J.: Equipartition of energy for nonlinear systems. J. Math. Phys. 2, 387–393 (1961)

    Article  MATH  ADS  Google Scholar 

  26. Venakides, S.: The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data. Trans. Am. Math. Soc. 301, 189–226 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Livi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benettin, G., Livi, R. & Ponno, A. The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions. J Stat Phys 135, 873–893 (2009). https://doi.org/10.1007/s10955-008-9660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9660-6

Keywords

Navigation