Skip to main content

Advertisement

Log in

Experimental Study of Density, Viscosity and Equilibrium Carbon Dioxide Solubility in Some Aqueous Alkanolamine Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, equilibrium solubility of CO2 in aqueous blends of different amines is examined. The amines used are methyldiethanolamine (MDEA), N,N-dimethylaminoethanol (DMAE), N,N-diethylaminoethanol (DEAE), 2-(2-aminoethylamino)ethanol (AEEA), and 3-methylamino propylamine (MAPA). New equilibrium solubility data for CO2 in aqueous solutions of DMAE + MAPA, DMAE + AEEA, MDEA + MAPA, MDEA + AEEA, DEAE + MAPA and DEAE + AEEA over a range of low pressures are obtained. Each of the solutions contains 40 wt% of a tertiary amine (DMAE, MDEA, DEAE) and 5 wt% of a primary/secondary amine (MAPA, AEEA). The experimental temperature was set to 313.15 K and the measured CO2 loading was in the range of 0.274–4.563 (mol CO2 per kg of solution). In order to make a better comparison, viscosities and densities of the amine solutions were also measured at 303.15–353.15 K. Experiments show that the aqueous DMAE + MAPA blend has the highest absorption capacity, and at the same time, its viscosity and density are in a desirable range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chowdhury, F.A., Yamada, H., Higashii, T., Goto, K., Onoda, M.: CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 52, 8323–8331 (2013). https://doi.org/10.1021/ie400825u

    Article  CAS  Google Scholar 

  2. Ma’mun, S., Svendsen, H.F., Hoff, K.A., Juliussen, O.: Selection of new absorbents for carbon dioxide capture. Energy Conversion Management 48, 251–258 (2007). https://doi.org/10.1016/j.enconman.2006.04.007

    Article  CAS  Google Scholar 

  3. Sabouni, R., Kazemian, H., Rohani, S.: Carbon dioxide adsorption in microwave-synthesized metal organic framework CPM-5: equilibrium and kinetics study. Microporous Mesoporous Mater. 175, 85–91 (2013). https://doi.org/10.1016/j.micromeso.2013.03.024

    Article  CAS  Google Scholar 

  4. Stewart, C., Hessami, M.-A.: A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Conversion Management 46, 403–420 (2005). https://doi.org/10.1016/j.enconman.2004.03.009

    Article  CAS  Google Scholar 

  5. Sema, T., Naami, A., Fu, K., Edali, M., Liu, H., Shi, H., Liang, Z., Idem, R., Tontiwachwuthikul, P.: Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chem. Eng. J. 209, 501–512 (2012). https://doi.org/10.1016/j.cej.2012.08.016

    Article  CAS  Google Scholar 

  6. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I.: Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20, 14–27 (2008). https://doi.org/10.1016/S1001-0742(08)60002-9

    Article  CAS  Google Scholar 

  7. Zaman, M., Lee, J.H.: Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J. Chem. Eng. 30, 1497–1526 (2013)

    Article  CAS  Google Scholar 

  8. Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: A review. Energy 46, 431–441 (2012). https://doi.org/10.1016/j.energy.2012.08.006

    Article  CAS  Google Scholar 

  9. Yu, C.-H., Huang, C.-H., Tan, C.-S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012)

    Article  CAS  Google Scholar 

  10. Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Ren. Sustan. Energy Revi. 39, 426–443 (2014). https://doi.org/10.1016/j.rser.2014.07.093

    Article  CAS  Google Scholar 

  11. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology—The U.S. Department of Energy’s carbon sequestration program. Int. J. Greenhouse Gas Cont. 2, 9–20 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1

    Article  CAS  Google Scholar 

  12. Ghanbarabadi, H., Khoshandam, B.: Simulation and comparison of Sulfinol solvent performance with amine solvents in removing sulfur compounds and acid gases from natural sour gas. J. Nat. Gas Sci. Eng. 22, 415–420 (2015). https://doi.org/10.1016/j.jngse.2014.12.024

    Article  CAS  Google Scholar 

  13. Rebolledo-Libreros, M.A.E., Trejo, A.: Gas solubility of CO2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol. Fluid Phase Equilib. 218, 261–267 (2004). https://doi.org/10.1016/j.fluid.2003.12.012

    Article  CAS  Google Scholar 

  14. Rebolledo-Morales, M.Á., Rebolledo-Libreros, M.E., Trejo, A.: Equilibrium solubility of CO2 in aqueous solutions of 1-amino-2-propanol as function of concentration, temperature, and pressure. J. Chem. Thermodyn. 43, 690–695 (2011). https://doi.org/10.1016/j.jct.2010.12.008

    Article  CAS  Google Scholar 

  15. Rebolledo-Libreros, M.E., Trejo, A.: Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343, and 393 K in the range 2.5–1036 kPa. Fluid Phase Equilib. 224, 83–88 (2004). https://doi.org/10.1016/j.fluid.2004.06.049

    Article  CAS  Google Scholar 

  16. Mumford, K.A., Wu, Y., Smith, K.H., Stevens, G.W.: Review of solvent based carbon-dioxide capture technologies. Frontiers Chem. Sci. Eng. 9, 125–141 (2015). https://doi.org/10.1007/s11705-015-1514-6

    Article  CAS  Google Scholar 

  17. Gao, H., Xu, B., Liu, H., Liang, Z.: Effect of amine activators on aqueous N,N-diethylethanolamine Solution for postcombustion CO2 capture. Energy Fuels 30, 7481–7488 (2016). https://doi.org/10.1021/acs.energyfuels.6b00671

    Article  CAS  Google Scholar 

  18. Sobrino, M., Concepción, E.I., Gómez-Hernández, Á., Martín, M.C., Segovia, J.J.: Viscosity and density measurements of aqueous amines at high pressures: MDEA–water and MEA–water mixtures for CO2 capture. J. Chem. Thermodyn. 98, 231–241 (2016). https://doi.org/10.1016/j.jct.2016.03.021

    Article  CAS  Google Scholar 

  19. Mandal, B.P., Kundu, M., Bandyopadhyay, S.S.: Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine). J. Chem. Eng. Data 48, 703–707 (2003). https://doi.org/10.1021/je020206a

    Article  CAS  Google Scholar 

  20. Park, M.K., Sandall, O.C.: Solubility of carbon dioxide and nitrous oxide in 50 mass methyldiethanolamine. J. Chem. Eng. Data 46, 166–168 (2001). https://doi.org/10.1021/je000190t

    Article  CAS  Google Scholar 

  21. Hosseini, Jenab M., Abedinzadegan, Abdi M., Najibi, S.H., Vahidi, M., Matin, N.S.: Solubility of carbon dioxide in aqueous mixtures of N-methyldiethanolamine + piperazine + sulfolane. J. Chem. Eng. Data. 50, 583–586 (2005). https://doi.org/10.1021/je049666p

    Article  CAS  Google Scholar 

  22. Zoghi, A.T., Feyzi, F., Zarrinpashneh, S.: Equilibrium solubility of carbon dioxide in a 30 wt% aqueous solution of 2-((2-aminoethyl)amino)ethanol at pressures between atmospheric and 4400 kPa: An experimental and modeling study. J. Chem. Thermodyn. 44, 66–74 (2012). https://doi.org/10.1016/j.jct.2011.08.011

    Article  CAS  Google Scholar 

  23. Linstrom P.J., Mallard W., NIST Chemistry Webbook; NIST standard reference database No. 69, National Institute of Standards and Technology, Gaithersburg MD, (2018)

  24. Najafloo, A., Zoghi, A.T., Feyzi, F.: Measuring solubility of carbon dioxide in aqueous blends of N-methyldiethanolamine and 2-((2-aminoethyl)amino)ethanol at low CO2 loadings and modelling by electrolyte SAFT-HR EoS. J. Chem. Thermodyn. 82, 143–155 (2015). https://doi.org/10.1016/j.jct.2014.11.006

    Article  CAS  Google Scholar 

  25. Al-Ghawas, H.A., Hagewiesche, D.P., Ruiz-Ibanez, G., Sandall, O.C.: Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data 34, 385–391 (1989). https://doi.org/10.1021/je00058a004

    Article  CAS  Google Scholar 

  26. Sidi-Boumedine, R., Horstmann, S., Fischer, K., Provost, E., Furst, W., Gmehling, J.: Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions. Fluid Phase Equilib. 218, 85–94 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors greatly appreciate the financial support for this research provided by the Research Institute of Petroleum Industries (RIPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Feyzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A., Zoghi, A.T., Feyzi, F. et al. Experimental Study of Density, Viscosity and Equilibrium Carbon Dioxide Solubility in Some Aqueous Alkanolamine Solutions. J Solution Chem 48, 489–501 (2019). https://doi.org/10.1007/s10953-019-00872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00872-4

Keywords

Navigation