Skip to main content
Log in

Interactions of W(VI) and Mo(VI) Oxyanions with Metal Cations in Natural Waters

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The association of tungsten(VI) and molybdenum(VI) oxyanions with metal cations was investigated under conditions simulating those prevailing in most natural waters. Potentiometric titrations were carried out for the systems containing tungsten(VI) or molybdenum(VI) anions and metal cations. The selection includes the major metal cations and some other ions of high environmental relevance. At neutral and basic pH values, in the presence of the most abundant metal cations, ionic pair species such as [Ca(WO4)] or [Ca(MoO4)] are formed to high extents. For the acidic pH range, polyoxoanion associations with cations are also found but are only relevant for tungsten(VI) in the conditions of the natural aquatic systems. The present results provide the basis for studying W(VI) and Mo(VI) speciation in natural aquatic systems, on which the environmental fate, bioavailability and toxicity of the elements depend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koutsospyros, A., Braida, W., Christodoulatos, C., Dermatas, D., Strigu, L.N.: A review of tungsten: from environmental obscurity to scrutiny. J. Hazard. Mater. 136, 1–19 (2006)

    Article  CAS  Google Scholar 

  2. Kletzin, A., Adams, M.W.W.: Tungsten in biological systems. FEMS Microbiol. Rev. 18, 5–63 (1996)

    Article  CAS  Google Scholar 

  3. Strigul, N.: Does speciation matter for tungsten ecotoxicology? Ecotoxicol. Environ. Saf. 73, 1099–1113 (2010)

    Article  CAS  Google Scholar 

  4. Mendel, R.R., Bittner, F.: Cell biology of molybdenum. Biochim. Biophys. Acta 1763, 621–635 (2006)

    Article  CAS  Google Scholar 

  5. Vyskocil, A., Viau, C.: Assessment of molybdenum toxicity in humans. J. Appl. Toxicol. 19, 185–192 (1999)

    Article  CAS  Google Scholar 

  6. Kabata-Pendias, A., Pendias, H.: Trace Elements in Soils and Plants, 3rd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  7. Strigul, N., Koutsospyros, A., Christodoulatos, C.: Tungsten speciation and toxicity: acute toxicity of mono-and poly-tungstates to fish. Ecotoxicol. Environ. Saf. 73, 164–171 (2010)

    Article  CAS  Google Scholar 

  8. Strigul, N., Galdun, C., Vaccari, L., Ryan, T., Braida, W., Christodoulatos, C.: Influence of speciation on tungsten toxicity. Desalination 248, 869–879 (2009)

    Article  CAS  Google Scholar 

  9. McGrath, S.P., Micó, C., Curdy, R., Zhao, F.J.: Predicting molybdenum toxicity to higher plants: influence of soil properties. Environ. Poll. 158, 3095–3102 (2010)

    Article  CAS  Google Scholar 

  10. Bodek, I., Lyman, W.J., Feehl, W.F., Rosenblatt, D.H.: Environmental Inorganic Chemistry. Pergamon Press, New York (1988)

    Google Scholar 

  11. Alloway, B.J. (ed.): Environmental Pollution: Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability, vol. 22, 3rd edn. Springer, New York (2013)

  12. Clausen, J.L., Korte, N.: Environmental fate of tungsten from military use. Sci. Total Environ. 407, 2887–2893 (2009)

    Article  CAS  Google Scholar 

  13. Hsu, S.C., Hsieh, H.L., Chen, C.P., Tseng, C.M., Huang, S.C., Huang, C.H., Huang, Y.T., Radashevsky, V., Lin, S.H.: Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. J. Hazard. Mater. 189, 193–202 (2011)

    Article  CAS  Google Scholar 

  14. Yu, C., Xu, S., Gang, M., Chen, G., Zhou, L.: Molybdenum pollution and speciation in Nver River sediments impacted with Mo mining activities in western Liaoning, northeast China. Int. J. Environ. Res. 5, 205–212 (2011)

    CAS  Google Scholar 

  15. Seiler, R.L., Stollenwerk, K.G., Garbarino, J.R.: Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada. Appl. Geochem. 20, 423–441 (2005)

    Article  CAS  Google Scholar 

  16. Kishida, K., Okamura, K., Ishibachi, J.: Tungsten enriched in submarine hydrothermal fluids. Earth Planet. Sci. Lett. 222, 819–827 (2004)

    Article  CAS  Google Scholar 

  17. Johannesson, K.H., Berrylyons, W., Graham, E.Y., Welch, K.A.: Oxyanion concentrations in Eastern Sierra Nevada Rivers: boron, molybdenum, vanadium and tungsten. Aquat. Geochem. 6, 19–46 (2000)

    Article  CAS  Google Scholar 

  18. Leybourne, M.I., Cameron, E.M.: Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem. Geol. 2008(247), 208–228 (2008)

    Article  Google Scholar 

  19. Stability Constants Database. IUPAC (2007)

  20. May, P.M., Murray, K.: JESS—a joint expert speciation system. Talanta 38, 1409–1417 (1991)

    Article  CAS  Google Scholar 

  21. Johannesson, K.H., Dave, H.B., Mohajerin, T.J., Datta, S.: Controls on tungsten concentrations in groundwater flow systems: the role of adsorption, aquifer sediment Fe(III) oxide/oxyhydroxide content and thiotungstate formation. Chem. Geol. 351, 76–94 (2013)

    Article  CAS  Google Scholar 

  22. Murata, K., Ikeda, S.: Studies on polynuclear molybdates in the aqueous solution by laser Raman spectroscopy. Spectrochim. Acta A 39, 787–794 (1983)

    Article  Google Scholar 

  23. Petterson, L., Andersson, I., Ohman, L.O.: Multicomponent polyanions. 31P NMR study of aqueous molybdophosphates. Acta Chem. Scand. A 39, 53–58 (1985)

    Article  Google Scholar 

  24. Cruywagen, J.J., de Wet, H.: Equilibrium study of the adsorption of molybdenum(VI) on activated carbon. Polyhedron 7, 547–556 (1988)

    Article  CAS  Google Scholar 

  25. Martire, D., Feliz, M., Capparelli, A.: Kinetic study of the molybdenum(VI)–l-histidine and molybdenum(VI)–imidazole systems. Polyhedron 8, 2225–2232 (1989)

    Article  CAS  Google Scholar 

  26. Cruywagen, J.J.: Protonation, oligomerization and condensation reactions of vanadate(V), molybdate(VI) and tungstate(VI). Adv. Inorg. Chem. 49, 127–182 (2000)

    Article  CAS  Google Scholar 

  27. Cruywagen, J.J., Draaijer, A.G., Heyns, J.B.B., Rohwer, E.A.: Molybdenum(VI), equilibria in different ionic media. Formation constants and thermodynamic quantities. Inorg. Chim. Acta 331, 322–329 (2001)

    Article  Google Scholar 

  28. Farkas, E., Csoka, H.: Copper(II), nickel(II), zinc(II) and molybdenum(VI) complexes of desferroxamine B in aqueous solution. J. Inorg. Biochem. 65, 281–287 (1997)

    Article  CAS  Google Scholar 

  29. Holm, R.H., Solomon, E.I., Majumdar, A., Tenderholt, A.: Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coord. Chem. Rev. 255, 993–1015 (2011)

    Article  CAS  Google Scholar 

  30. Cruywagen, J.J., Van der Merwe, I.F.J.: Tungsten(VI) equilibria: a potentiometric and calorimetric investigation. J. Chem. Soc. Dalton Trans. 7, 1701–1705 (1987)

    Article  Google Scholar 

  31. Van Put, J.W.: Crystallisation and processing of ammonium paratungstate (APT). Int. J. Refract. Metals Hard Mater. 13, 61–76 (1995)

    Article  Google Scholar 

  32. Smith, B.J., Patrick, V.A.: Quantitative determination of sodium metatungstate speciation by NMR spectroscopy. Aust. J. Chem. 53, 965–970 (2000)

    Article  CAS  Google Scholar 

  33. De Buysser, K., Van Driessche, I., Vermeir, P., Thuy, T.T., Schaubroeck, J., Hoste, S.: EXAFS analysis of blue luminescence in polyoxytungstate citrate gels. Phys. Stat. Sol. 245, 2483–2489 (2008)

    Article  Google Scholar 

  34. Davantès, A., Costa, D., Lefèvre, G.: Infrared study of (poly)tungstate ions in solution and sorbed into layered double hydroxides: vibrational calculations and in situ analysis. J. Phys. Chem. 119, 12356–12364 (2015)

    Google Scholar 

  35. Cruywagen, J.J., Pienaar, A.T.: The adsorption of tungsten (VI) on activated carbon from 1.0 M Na(H)Cl solution. PoIyhedron 8, 71–76 (1989)

  36. Wesolowski, D., Drummond, S.E., Mesmer, R.E., Ohmoto, H.: Hydrolysis equilibria of tungsten(V1) in aqueous sodium chloride solutions to 300 °C. Inorg. Chem. 23, 1120–1132 (1984)

    Article  CAS  Google Scholar 

  37. Aveston, J.: Hydrolysis of tungsten(VI): ultracentrifugation, acidity measurements, and Raman spectra of polytungstates. Inorg. Chem. 3, 981–986 (1964)

    Article  CAS  Google Scholar 

  38. Rozantsev, G.M., Sazonova, O.I.: Thermodynamic parameters of interconversions of isopolyanions in solutions of tungsten(VI). Russ. J. Coord. Chem. 31, 552–558 (2005)

    Article  CAS  Google Scholar 

  39. Pyrzynska, K.: Determination of molybdenum in environmental samples. Anal. Chim. Acta 590, 40–48 (2007)

    Article  CAS  Google Scholar 

  40. Bednar, A.J., Jones, W.T., Boyd, R.E., Ringelberg, D.B., Larson, S.L.: Geochemical parameters influencing tungsten mobility in soils. J. Environ. Qual. 37, 229–233 (2008)

    Article  CAS  Google Scholar 

  41. Gustafsson, J.P.: Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 200, 105–115 (2003)

    Article  CAS  Google Scholar 

  42. Torres, J., Gonzatto, L., Peinado, G., Kremer, C., Kremer, E.: Interaction of molybdenum(VI) oxyanions with +2 metal cations. J. Solution Chem. 43, 1687–1700 (2014)

    Article  CAS  Google Scholar 

  43. Gans, P., O’Sullivan, B.: Glee, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)

    Article  CAS  Google Scholar 

  44. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  45. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  46. Torres, J., Pintos, V., Gonzatto, L., Domínguez, S., Kremer, C., Kremer, E.: Selenium chemical speciation in natural waters. Chem. Geol. 288, 32–38 (2011)

    CAS  Google Scholar 

  47. Bretti, C., Crea, F., De Stefano, C., Foti, C., Materazzi, S., Vianelli, G.: Thermodynamic properties of dopamine in aqueous solution. Acid–base properties, distribution, and activity coefficients in NaCl aqueous solutions at different ionic strengths and temperatures. J. Chem. Eng. Data 58, 2835–2847 (2013)

    Article  CAS  Google Scholar 

  48. Bretti, C., De Stefano, C., Millero, F.J., Sammartano, S.G.: Modeling of protonation constants of linear aliphatic dicarboxylates containing –S–groups in aqueous chloride salt solutions, at different ionic strengths, using the SIT and Pitzer equations and empirical relationships. J. Solution Chem. 37, 763–784 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Kremer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 kb)

Appendix

Appendix

According to the SIT model [4648]:

$$ \log_{10} K_{i} = \log_{10} K_{i}^{0} - \Delta z^{2} {\text{DH}} + I\Delta \varepsilon $$
(A.1)

where K i is the measured protonation constant, \( K_{i}^{0} \) is the corresponding infinite dilution value, Δz 2 is the squared charge difference of reactants and products, DH is the Debye-Hückel term, i.e. Eq. A.2, I is the ionic strength on the molal scale, and Δε is the sum of the specific interaction coefficients of reactants and products.

In turn, the Debye-Hückel term, DH, is calculated as follows:

$$ {\text{DH }} = A\sqrt {\frac{I}{(1 + B\sqrt I )}} $$
(A.2)

where

A = 0.505 kg1/2·mol−1/2 at 20.0 °C.

B = 1.5 kg1/2·mol−1/2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, J., Tissot, F., Santos, P. et al. Interactions of W(VI) and Mo(VI) Oxyanions with Metal Cations in Natural Waters. J Solution Chem 45, 1598–1611 (2016). https://doi.org/10.1007/s10953-016-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0522-6

Keywords

Navigation