Skip to main content
Log in

The Decomposition of Oxalic Acid in Nitric Acid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The rate of decomposition of oxalic acid in strong nitric acid solutions increases with increasing acidity and temperature with the rate of reaction following pseudo-first-order kinetics with respect to oxalic acid. The order of nitric acid on the overall reaction has been shown to be 2.7, although this result should be treated with some caution due to scatter in the results at different temperatures. The activation energy was determined to be 116 ± 7 kJ·mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cleveland, J.M.: Compounds of plutonium. In: Wick, O.J. (ed.) Plutonium Handbook. A Guide to the Technology, vol. I, II, pp. 335–402. American Nuclear Society, La Grange Park (1980)

    Google Scholar 

  2. Patterson, J.P., Parkes, P.: Recycling uranium and plutonium. In: Wilson, P.D. (ed.) The Nuclear Fuel Cycle, pp. 138–160. Oxford Science Publications, Oxford (1996)

    Google Scholar 

  3. Abraham, F., Arab-Chapelet, B., Rivenet, M., Tamain, C., Grandjean, S.: Actinide oxalates, solid state structures and applications. Coord. Chem. Rev. 266–267, 28–68 (2014). doi:10.1016/j.ccr.2013.08.036

    Article  Google Scholar 

  4. Orr, R.M., Sims, H.E., Taylor, R.J.: A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product. J. Nucl. Mater. 465, 756–773 (2015)

    Article  CAS  Google Scholar 

  5. Sarsfield, M.J.: The co-precipitation and conversion of mixed actinide oxalates for aqueous based reprocessing of spent nuclear fuels. In: Taylor, R.J. (ed.) Reprocessing and Recycling of Spent Nuclear Fuels, vol. WPE79, pp. 325–352. Woodhouse Publishing, Elsevier, Amsterdam (2015)

    Google Scholar 

  6. Arab-Chapelet, B., Grandjean, S., Nowogrocki, G., Abraham, F.: Synthesis and characterization of mixed An(IV)/An(III) oxalates (An(IV) = Th, Np, U or Pu and An(III) = Pu or Am). J. Nucl. Mater. 373, 259–268 (2008)

    Article  CAS  Google Scholar 

  7. Vaudez, S., Belin, R.C., Aufore, L., Sornay, P., Grandjean, S.: A new fabrication route for SFR fuel using (U, Pu)O2 powder obtained by oxalic co-conversion. J. Nucl. Mater. 442, 227–234 (2013). doi:10.1016/j.jnucmat.2013.08.023

    Article  CAS  Google Scholar 

  8. Senentz, G., Drain, F., Baganz, C.: COEX™ recycling plant: a new standard for an integrated plant. In: GLOBAL 2009, Paris. Proceedings GLOBAL 2009, pp. 62-65. American Nuclear Society (2009)

  9. Grandjean, S., Chapelet-Arab, B., Lemonnier, S., Robisson, A.-C., Vigier, N.: Innovative Synthesis Methods of Mixed Actinides Compounds with Control of the Composition Homogeneity at a Molecular or Nanometric Scale. MRS Online Proceedings Library (2005). doi:10.1557/PROC-0893-JJ08-03

    Google Scholar 

  10. Modolo, G., Asp, H., Vijgen, H., Malmbeck, R., Magnusson, D., Sorel, C.: Demonstration of a TODGA-based continuous counter-current extraction process for the partitioning of actinides from a simulated PUREX raffinate, Part II: Centrifugal contactor runs. Solvent Extract. Ion Exchange 26, 62–76 (2008)

    Article  CAS  Google Scholar 

  11. Sypula, M., Wilden, A., Schreinemachers, C., Malmbeck, R., Geist, A., Taylor, R., Modolo, G.: Use of polyaminocarboxylic acids as hydrophilic masking agents for fission products in actinide partitioning processes. Solvent Extract. Ion Exchange 3, 748–764 (2013)

    Google Scholar 

  12. Bluhm, E.A., Abney, K.D., Balkey, S., Brock, J.C., Coriz, F., Dyke, J.T., Garcia, D.J., Griego, B.J., Martinez, B.T., Martinez, J.R., Martinez, Y.A., Morgan, L., Roybal, J.D., Valdez, J.A., Ramsey, K.B., Bluhm, B.K., Martinez, C.D., Valdez, M.M.: Plutonium oxide polishing for MOX fuel production. Separation Sci. Tech. 40, 281–296 (2005)

    Article  CAS  Google Scholar 

  13. Kubota, M.: Decomposition of oxalic acid with nitric acid. J. Radioanal. Nucl. Chem. 75, 39–49 (1982)

    Article  CAS  Google Scholar 

  14. Zhirnov, Y.P., Zhikharev, M.I., Chilikin, A.Y., Korotkova, T.P.: Behaviour of organic substances under conditions of evaporation of nitric-acid raffinates. At. Energ. 84, 19–22 (1998)

    Article  CAS  Google Scholar 

  15. Katsumura, Y.: NO2 and NO3 radicals in the radiolysis of nitric acid solutions. In: Alfassi, Z.B. (ed.) The Chemistry of Free Radicals: N-Centred Radicals, pp. 393–412. Wiley, New York (1998)

    Google Scholar 

  16. Cotton, F.A., Wilkinson, G.: Nitrogen: Group VA (15). In: Advanced Inorganic Chemistry, pp. 305–381. Wiley, New York (1988)

Download references

Acknowledgments

This paper is based on original work commissioned by Sellafield Ltd. with additional funding from The European Union FP7 Project SACSESS (Project Number 323282). NNL’s Strategic Research Programme, the Nuclear Decommissioning Authority, Sellafield Ltd., and the Department of Energy and Climate Change are acknowledged for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Taylor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, C., Brown, T.L., Buchanan, D. et al. The Decomposition of Oxalic Acid in Nitric Acid. J Solution Chem 45, 325–333 (2016). https://doi.org/10.1007/s10953-016-0437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0437-2

Keywords

Navigation