Skip to main content
Log in

Study of the Interaction Between Promazine Hydrochloride and Surfactant (Conventional/Gemini) Mixtures at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present paper, the micellization of an amphiphilic drug, promazine hydrochloride, and gemini surfactants (16-s-16) with s = 4–6 and the monomeric hexadecyltrimethylammonium bromide (CTAB) counterparts has been examined conductometrically in the pure and mixed states in aqueous solutions at different compositions and temperatures (298.15–308.15 K). Dicationic gemini surfactants provide much better environment for the micellization behavior than the corresponding monocationic counterpart CTAB. The critical micelle concentration (cmc) values are lower than the cmc for ideal mixing, cmc id, suggesting attractive interactions between the two components in mixed micelles. The micellar mole fractions of surfactants, evaluated by different models, show greater contributions of surfactants in mixed micelles and increase with increasing concentrations of these surfactants. The negative values of β suggest synergism in the mixtures, which is highly beneficial as it reduces the total amount of surfactants required in a particular application, leading to reductions of cost and environmental impact. Activity coefficients (f 1 and f 2) are always less than unity showing nonideality in the systems. The data have been also used for evaluation of thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aungst, B.J., Phang, S.: Metabolism of a neurotensin (8–13) analog by intestinal and nasal enzymes, and approaches to stabilize this peptide at these absorption sites. Int. J. Pharm. 117, 95–100 (1995)

    Article  CAS  Google Scholar 

  2. Muranushi, N., Kinugawa, M., Nakajima, Y., Muranishi, S., Sekazi, H.: Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles. I. Effects of various lipid-bile salt mixed micelles on the intestinal absorption of streptomycin in rat. Int. J. Pharm. 4, 271–279 (1980)

    Article  CAS  Google Scholar 

  3. Kabanov, A.V., Batrakova, E.V., Melik-Nubarov, N.S., Fedoseev, N.A., Dorodnich, T.Y., Alakhov, V.Y., Chekhonin, V.P., Nazarova, I.R., Kabanov, V.A.: A new class of drug carriers, micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J. Control Release 22, 141–157 (1992)

    Article  CAS  Google Scholar 

  4. Müller, R.H.: Colloidal Carriers for Controlled Drug Delivery and Targeting. Wissenschaftliche Verlagsgesellschaft, Stuttgart. Germany, and CRC Press, Boca Raton, FL (1991)

  5. Cohen, S., Bernstein, H. (eds.): Microparticulate Systems for the Delivery of Proteins and Vaccines. Marcel Dekker, New York (1996)

  6. Jones, M., Leroux, J.: Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48, 101–111 (1999)

    Article  CAS  Google Scholar 

  7. Torchilin, V.P.: Structure and design of polymeric surfactant-base drug delivery systems. J. Control. Release 73, 137–172 (2001)

    Article  CAS  Google Scholar 

  8. Novel surfactants, preparation, applications, and biodegradability. In: Holmberg K. (ed.) Surfactant Science Series, vol. 74. Marcel Dekker, New York (1998)

  9. Menger, F.M., Littau, C.A.: Gemini surfactants: a new class of self-assembling molecules. J. Am. Chem. Soc. 115, 10083–10090 (1993)

    Article  CAS  Google Scholar 

  10. Menger, F.M., Keiper, J.S.: Gemini surfactants. Angew. Chem. Int. Ed. 39, 1906–1920 (2000)

    Article  Google Scholar 

  11. Xia, J., Zana, R.: Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications. Marcel Dekker Inc., New York (2004)

    Google Scholar 

  12. Attwood, D., Florence, A.T.: Surfactant Systems, Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York (1983)

    Google Scholar 

  13. Schreier, S., Malheiros, S.V.P., de Paula, E.: Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim. Biophys. Acta 1508, 210–234 (2000)

    Article  CAS  Google Scholar 

  14. De, S., Aswal, V.K., Goyal, P.S., Bhattacharya, S.: Role of spacer chain length in dimeric micellar organization. Small angle neutron scattering and fluorescence studies. J. Phys. Chem. 100, 11664–11671 (1996)

    Article  CAS  Google Scholar 

  15. Kabir-ud-Din, Fatma, W., Khatoon, S., Khan, Z.A., Naqvi, A.Z.: Surface and solution properties of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) gemini surfactants in the presence of additives. J. Chem. Eng. Data 53, 2291–2300 (2008)

  16. Mukerjee, P., Mysels, K.J.: Critical Micelle Concentrations of Aqueous Surfactant Systems. NSRDS-NB-36, Washington, D.C. (1971)

  17. Rodriguez, A., Junquera, E., del Burgo, P., Aicart, E.: Conductometric and spectrofluorimetric characterization of the mixed micelles constituted by dodecyltrimethylammonium bromide and a tricyclic antidepressant drug in aqueous solution. J. Coll. Interface Sci. 269, 476–483 (2004)

    Article  CAS  Google Scholar 

  18. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelles of amphiphilic drug promethazine hydrochloride and surfactants (conventional and gemini) at 293.15 K to 308.15 K: Composition, interaction and stability of the aggregates. J. Coll. Interface Sci. 354, 700–708 (2011)

  19. Rub, M.A., Asiri, A.M., Naqvi, A.Z., Rahman, M.M., Khan, S.B., Kabir-ud-Din: Mixed micellization between amphiphilic drug promethazine hydrochloride and cationic surfactant (conventional as well as gemini). J. Mol. Liq. 177, 19–25 (2013)

    Article  CAS  Google Scholar 

  20. Rub, M.A., Asiri, A.M., Azum, N., Khan, A., Khan, A.A.P., Khan, S.B., Rahman, M.M., Kabir-ud-Din: Amphiphilic antidepressant drug amitriptyline hydrochloride under the influence of ionic and nonionic hydrotropes; micellization and phase separation. J. Ind. Eng. Chem. 19, 1774–1780 (2013)

  21. Rub, M.A., Asiri, A.M., Azum, N., Kabir-ud-Din: Investigation of micellar and phase separation phenomenon of phenothiazine drug promazine hydrochloride with anionic hydrotropes. J. Ind. Eng. Chem. (2013). doi:10.1016/j.jiec.2013.09.027

  22. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 1 71, 1327–1334 (1975)

    Article  CAS  Google Scholar 

  23. Stead, J.A., Taylor, H.: Some solution properties of certain surface-active N-alkylpyridinium halides: I. Effect of temperature on the critical micelle concentrations. J. Coll. Interfac. Sci. 30, 482–488 (1969)

  24. Kabir-ud-Din, Siddiqui, U.S., Kumar, S., Dar, A.A.: Micellization of monomeric and dimeric (gemini) surfactants in polar nonaqueous–water–mixed solvents. Colloid Polym. Sci. 284, 807–812 (2006)

  25. Ruiz, C.C., Diaz-Lopez, L., Aguiar, J.: Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: a thermodynamic and structural study. J. Coll. Interface Sci. 305, 293–300 (2007)

    Article  Google Scholar 

  26. Meguro, K., Ueno, M., Esumi, K.: Nonionic Surfactants: Physical Chemistry. In: Schick M.J. (ed.) Marcel Dekker, New York (1987)

  27. Lopez Fontan, J.L., Costa, J., Ruso, J.M., Prieto, G., Sarmiento, F.: Electrical conductivities and critical micelle concentrations (determined by the local polynomial regression method) of imipramine and clomipramine hydrochlorides from (283 to 313) K. J. Chem. Eng. Data 49, 1008–1012 (2004)

  28. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and gemini) at 293.15–308.15 K. J. Phys. Chem. B 114, 6354–6364 (2010)

  29. Asakawa, T., Kitano, H., Ohta, A., Miyagishi, S.: Convenient estimation for counterion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J. Coll. Interface Sci. 242, 284–287 (2001)

    Article  CAS  Google Scholar 

  30. Evans, H.C.: Alkyl sulphates. Part I. Critical micelle concentrations of the sodium salts. J. Chem. Soc. 60, 579–586 (1956)

    Article  Google Scholar 

  31. Iijima, H., Kato, T., Soderman, A.: Variation in degree of counterion binding to cesium perfluorooctanoate micelles with surfactant concentration studied by 133Cs and 19F NMR. Langmuir 16, 318–323 (2000)

    Article  CAS  Google Scholar 

  32. Zana, R.: Ionization of cationic micelles: effect of the detergent structure. J. Coll. Interface Sci. 78, 330–337 (1980)

    Article  CAS  Google Scholar 

  33. Gorski, N., Kalus, J.: Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17, 4211–4215 (2001)

    Article  CAS  Google Scholar 

  34. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Wiley, New York (1980)

    Google Scholar 

  35. Clint, J.H.: Surfactant Aggregation. Blackie/Chapman and Hall, New York (1992)

    Book  Google Scholar 

  36. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12, 1208–1211 (1996)

    Article  CAS  Google Scholar 

  37. Taboada, P., Ruso, J.M., Garcia, M., Mosquera, V.: Surface properties of some amphiphilic antidepressant drugs. Colloids Surf. A 179, 125–128 (2001)

    Article  CAS  Google Scholar 

  38. Taboada, P., Martinez-Landeira, P., Ruso, J.M., Garcia, M., Mosquera, V.: Aggregation energies of some amphiphilic antidepressant drugs. Colloids Surf. A 197, 95–99 (2002)

    Article  CAS  Google Scholar 

  39. Rub, M.A., Asiri, A.M., Azum, N., Khan, A., Khan, A.A.P., Khan, S.B., Rahman, M.M., Kumar, D., Al-Youbi, A.O.: Analysis of mixed micellar behavior of promazine hydrochloride with surfactants in aqueous medium at different temperatures and compositions. Z. Phys. Chem. 227, 1671–1686 (2013)

    Google Scholar 

  40. Attwood, D., Boitard, E., Dubes, J.P., Tachoire, H.: Calorimetric study of the influence of electrolyte on the micellization of phenothiazine drugs in aqueous solution. J. Phys. Chem. B 101, 9586–9592 (1997)

    Article  CAS  Google Scholar 

  41. Nusselder, J.J.H., Engberts, J.B.F.N.: Toward a better understanding of the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 148, 353–361 (1992)

    Article  CAS  Google Scholar 

  42. Kresheck, G.C.: In: Franks F. (ed.) Water. A Comprehensive Treatise. Plenum, New York (1995)

  43. Rubingh, D.N.: In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants. Plenum, New York (1979)

  44. Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym. Sci. 262, 948–955 (1984)

    Article  CAS  Google Scholar 

  45. Rodenas, V., Valiente, M., Villafruela, M.S.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J. Phys. Chem. B 103, 4549–4554 (1999)

    Article  CAS  Google Scholar 

  46. Lange, H., Beck, K.H.: Zur mizellbildung in mischl¨osungen homologer und nichthomologer tenside. Kolloid Z. Z. Polym. 251, 424–431 (1973)

    Article  CAS  Google Scholar 

  47. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2004)

    Book  Google Scholar 

  48. Rub, M.A, Asiri, A.M., Khan, A., Khan, A.A.P., Azum, N., Khan, S.B., Kabir-ud-Din: Investigation of micellar and phase separation phenomenon of the amphiphilic drug amitriptyline hydrochloride with cationic hydrotropes. J. Solution Chem. 42, 390–411 (3013)

  49. Rub, M.A., Sheikh, M.S., Asiri, A.M., Azum, N., Khan, A., Khan, A.A.P., Khan, S.B., Kabir-ud-Din: Aggregation behaviour of amphiphilic drug and bile salt mixtures at different compositions and temperatures. J. Chem. Thermodyn. 64, 28–39 (2013)

    Article  Google Scholar 

  50. Rub, M.A., Azum, N., Kumar, D., Asiri, A.M., Marwani, H.M.: Micellization and microstructural studies between amphiphilic drug ibuprofen with nonionic surfactant in aqueous urea solution. J. Chem. Thermodyn. (2014). doi:10.1016/j.jct.2014.01.005

  51. Zana, R., Benrraou, M., Rueff, R.: Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7, 1072–1075 (1991)

  52. Hoffmann, H., Possnecker, G.: The mixing behavior of surfactants. Langmuir 10, 381–389 (1994)

    Article  CAS  Google Scholar 

  53. Maeda, H.: A thermodynamic analysis of charged mixed micelles in water. J. Phys. Chem. B 109, 15933–15940 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Chemistry Department and Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Abdul Rub.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2014_174_MOESM1_ESM.doc

Supplementary data Supplementary data associated with this article can be found, at www.springerlink.com. (DOC 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rub, M.A., Kumar, D., Azum, N. et al. Study of the Interaction Between Promazine Hydrochloride and Surfactant (Conventional/Gemini) Mixtures at Different Temperatures. J Solution Chem 43, 930–949 (2014). https://doi.org/10.1007/s10953-014-0174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0174-3

Keywords

Navigation