Skip to main content
Log in

Acid–Base Properties of the \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\)/\(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) Redox Couple in the Presence of Various Background Mineral Acids and Salts

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The acid–base behavior of \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) was investigated by measuring the formal potentials of the \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\)/\(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) couple over a wide range of acidic and neutral solution compositions. The experimental data were fitted to a model taking into account the protonated forms of \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) and using values of the activities of species in solution, calculated with a simple solution model and a series of binary data available in the literature. The fitting needed to take account of the protonated species \(\mathrm{HFe}(\mathrm{CN})_{6}^{3-}\) and \(\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}\), already described in the literature, but also the species \(\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}\) (associated with the acid–base equilibrium \(\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}\rightleftharpoons \mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-} + \mathrm{H}^{+}\)). The acidic dissociation constants of \(\mathrm{HFe}(\mathrm{CN})_{6}^{3-}\), \(\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}\) and \(\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}\) were found to be \(\mathrm{p}K^{\mathrm{II}}_{1}= 3.9\pm0.1\), \(\mathrm{p}K^{\mathrm{II}}_{2} = 2.0\pm0.1\), and \(\mathrm{p}K^{\mathrm{II}}_{3} = 0.0\pm0.1\), respectively. These constants were determined by taking into account that the activities of the species are independent of the ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loos-Neskovic, C., Fédoroff, M.: Fixation mechanisms of cesium on nickel and zinc ferrocyanides. Solvent Extr. Ion Exch. 7, 131–158 (1989)

    Article  CAS  Google Scholar 

  2. Loos-Neskovic, C., Fédoroff, M., Garnier, E., Jones, D.J.: Recovery of radioactive cesium with insoluble hexacyanoferrates: problems and perspectives. In: Yucomat 97: Materials Science Forum, vols. 282–283, pp. 171–181 (1998)

    Google Scholar 

  3. Loos-Neskovic, C., Fédoroff, M., Mecherri, M.O.: Ion fixation kinetics and column performance of nickel and zinc hexacyanoferrates(II). Analyst 115, 981–987 (1990)

    Article  CAS  Google Scholar 

  4. Rock, P.A.: The standard oxidation potential of the ferrocyanide–ferricyanide electrode at 25 °C and the entropy of ferrocyanide ion. J. Phys. Chem. 70, 576–580 (1966)

    Article  CAS  Google Scholar 

  5. Kolthoff, I.M., Tomsicek, W.J.: The oxidation potential of the system potassium ferrocyanide–potassium ferricyanide at various ionic strengths. J. Phys. Chem. 39, 945–954 (1935)

    Article  CAS  Google Scholar 

  6. Hanania, I.H., Irvine, D.H., Eaton, W.A., George, P.: Thermodynamic aspects of the potassium hexacyanoferrate(III)–(II) system. II. Reduction potential. J. Phys. Chem. 71, 2022–2030 (1967)

    Article  CAS  Google Scholar 

  7. Jordan, J., Ewing, G.J.: The protonation of hexacyanoferrates. Inorg. Chem. 1, 587–591 (1962)

    Article  CAS  Google Scholar 

  8. Eaton, W.A., George, P., Hanania, I.H.: Thermodynamic aspects of the potassium hexacyanoferrate(III)–(II) system. I. Ion association. J. Phys. Chem. 71, 2016–2021 (1967)

    Article  CAS  Google Scholar 

  9. Cohen, S.R., Plane, R.A.: The association of ferrocyanide ions with various cations. J. Phys. Chem. 61, 1096–1100 (1957)

    Article  CAS  Google Scholar 

  10. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Z. Phys. 24, 185–206 (1923)

    CAS  Google Scholar 

  11. Davies, C.W.: Ion Association. Butterworth, London (1962)

    Google Scholar 

  12. Grenthe, I., Puigdomenech, I.: Modelling in Aquatic Chemistry, OECD—Nuclear Energy Agency (1997)

  13. Brönsted, J.N.: Studies on solubility. IV. The principle of the specific interaction of ions. J. Am. Chem. Soc. 44, 877–898 (1922)

    Article  Google Scholar 

  14. Brönsted, J.N.: Calculations of the osmotic and activity functions in solutions of uni-univalent salts. J. Am. Chem. Soc. 44, 938–948 (1922)

    Article  Google Scholar 

  15. Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)

    Article  CAS  Google Scholar 

  16. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  17. Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–2130 (1966)

    Article  CAS  Google Scholar 

  18. Lobo, V.M.M.: Handbook of Electrolyte Solutions. Elsevier, Amsterdam (1989)

    Google Scholar 

  19. Ly, J., Poitrenaud, C.: Détermination des constantes de formation des complexes nitrate de cadmium(II) en solutions aqueuses concentrées en sels. Analusis 14, 192–199 (1986)

    CAS  Google Scholar 

  20. Camacho Frias, E., Pitsch, H., Ly, J., Poitrenaud, C.: Palladium complexes in concentrated nitrate and acid solutions. Talanta 42, 1675–1683 (1995)

    Article  Google Scholar 

  21. Mokili, B., Poitrenaud, C.: Modelling of the extraction of neodymium and praesodymium nitrates from aqueous solutions containing a salting-out agent or nitric acid by tri-n-butylphosphate. Solvent Extr. Ion Exch. 14, 635–651 (1996)

    Article  Google Scholar 

  22. Mokili, B., Poitrenaud, C.: Modelling of nitric acid and water extraction from aqueous solutions containing a salting-out agent by tri-n-butylphosphate. Solvent Extr. Ion Exch. 13, 755–769 (1995)

    Article  Google Scholar 

  23. Mokili, B., Poitrenaud, C.: Medium effect on the separation factor in liquid–liquid extraction. Application to the separation of trivalent lanthanide nitrates by tri-n-butylphosphate. Solvent Extr. Ion Exch. 15, 455–481 (1997)

    Article  CAS  Google Scholar 

  24. Charrin, N., Moisy, Ph., Blanc, P.: Contribution of the concept of simple solutions to calculation of the density of ternary and quaternary solutions of thorium(IV) or plutonium(IV) nitrate: An(NO3)4/UO2(NO3)2/HNO3/H2O. Radiochim. Acta 88, 445–451 (2000)

    Article  CAS  Google Scholar 

  25. Kappenstein-Grégoire, A.C., Moisy, Ph., Cote, G., Blanc, P.: Determination of binary data for neptunium(V) nitrate. Radiochim. Acta 91, 371–378 (2003)

    Article  Google Scholar 

  26. Kappenstein-Grégoire, A.C., Moisy, Ph., Cote, G., Blanc, P.: Dimerization of Np(V) and media effects in concentrated solutions. Radiochim. Acta 91, 665–672 (2003)

    Article  Google Scholar 

  27. Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)

    Article  CAS  Google Scholar 

  28. Charrin, N., Moisy, Ph., Garcia-Argote, S., Blanc, P.: Thermodynamic study of the ternary system Th(NO3)4/HNO3/H2O. Radiochim. Acta 86, 143–149 (1999)

    CAS  Google Scholar 

  29. Al-Niaimi, N.S., Wain, A.G., McKay, H.A.C.: Stability constants of the chloride and nitrate complexes of neptunium(V) and neptunium(VI). J. Inorg. Nucl. Chem. 32, 977–986 (1970)

    Article  CAS  Google Scholar 

  30. Hu, Y.-F.: The thermodynamics of nonelectrolyte systems at constant activities of any number of components. J. Phys. Chem. B 107, 13168–13177 (2003)

    Article  CAS  Google Scholar 

  31. Mikulin, G.I.: Voprossy Fizicheskoi Khimii Rastvorov Electrolitov (Problems in Physical Chemistry of Electrolyte Solutions). Izd. Khimiya, Leningrad (1968)

    Google Scholar 

  32. Sella, C., Bauer, D.: Determination of the hydrogen ion and chloride ion activities in hydrochloric acid. Hydrometallurgy 23, 353–364 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by GNR PARIS, ANR AMPLI (ANR-07-BLAN-0295) and Areva NC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moisy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crozes, X., Blanc, P., Cote, G. et al. Acid–Base Properties of the \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\)/\(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) Redox Couple in the Presence of Various Background Mineral Acids and Salts. J Solution Chem 41, 503–515 (2012). https://doi.org/10.1007/s10953-012-9805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9805-8

Keywords

Navigation