Skip to main content
Log in

Evaluation of the Standard Potential of the Ag/AgCl Electrode in a 50 wt-% Water–Ethanol Mixture

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This paper deals with the evaluation of the standard potential of the Ag/AgCl electrode in a water–ethanol mixture (50 wt-%). A potentiometric method was applied using a cell without liquid junction. Mean activity coefficients of HCl in the same mixture have been also determined. The measurements were performed in the HCl molality range from 0.005 to 0.1 mol⋅kg−1. The Debye–Hückel theory and Pitzer’s model, based on the interactions present in the solution, have been applied. Good agreement was found between the results obtained with the two approaches. Uncertainties of the Pitzer parameters and interionic forces are discussed based on the values found. The variation of the standard potential as a function of the temperature was used to calculate the transfer thermodynamic functions. The effects of the solvent composition on the thermodynamic properties of HCl allow to highlight structural changes in water–ethanol mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buck, R.P., Rondinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camões, M.F., Milton, M.J.T., Mussini, T., Naumann, R., Pratt, K.W., Spitzer, P., Wilson, G.S.: Measurement of pH. Definition, standards and procedures. Pure Appl. Chem. 74, 2169–2200 (2002)

    Article  CAS  Google Scholar 

  2. Rondinini, S., Mussini, P.R., Mussini, T., Vertova, A.: pH measurements in non-aqueous and mixed solvents: predicting pH(PS) of potassium hydrogen phthalate for alcohol–water mixtures. Pure Appl. Chem. 70, 1419–1422 (1988)

    Article  Google Scholar 

  3. Rondinini, S., Mussini, P.R., Mussini, T.: Reference value standards and primary standards for pH measurements. Pure Appl. Chem. 59, 1549–1560 (1987)

    Article  CAS  Google Scholar 

  4. Rondinini, S., Longhi, P., Mussini, P.R., Mussini, T.: Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 59, 1693–1702 (1987)

    Article  CAS  Google Scholar 

  5. Spitzer, P., Fisicaro, P., Seitz, S., Champion, R.: pH and electrolytic conductivity as parameters to characterize bioethanol. Accred. Qual. Assur. 14, 671–676 (2009)

    Article  CAS  Google Scholar 

  6. Mariassy, M., Pratt, K.W., Spitzer, P.: Major applications of electrochemical techniques at national metrology institutes. Metrologia 46, 199–213 (2009)

    Article  CAS  Google Scholar 

  7. Picard, C.: Thermochimie. De Boeck & Larcier, Paris (1996). Chap. 13

    Google Scholar 

  8. Girault, H.H.: Electrochimie Physique et Analytique. Presses Polytechnique et Universitaire Romandes, Lausanne (2007). Chap. 3

    Google Scholar 

  9. Bates, R.G., Macaskill, J.B.: Standard potential of the silver–silver chloride electrode. Pure Appl. Chem. 50, 1701–1706 (1978)

    Article  Google Scholar 

  10. Bates, R.G., Guggenheim, E.A.: Report on the standardization of pH and related terminology. Pure Appl. Chem. 1, 163–168 (1961)

    Article  Google Scholar 

  11. Mussini, T., Covington, A.K., Longhi, P., Rondinini, S.: Criteria for standardization of pH measurements in organic solvents and water + organic solvent mixtures of moderate to high permitivities. Pure Appl. Chem. 57, 865–876 (1985)

    Article  Google Scholar 

  12. Fisicaro, P., Ferrara, E., Prenesti, E., Berto, S.: Role of the activity coefficient in the dissemination of pH: comparison of primary (Harned cell) and secondary (glass electrode) measurements on phosphate buffer considering activity and concentration scales. Anal. Bioanal. Chem. 383, 341–348 (2005)

    Article  CAS  Google Scholar 

  13. Prenesti, E., Fisicaro, P., Berto, S., Ferrara, E., Daniele, P.G.: Monitoring the traceability of the pH of a primary tetraborate buffer: comparison of results from primary and secondary apparatus. Anal. Bioanal. Chem. 387, 2595–2600 (2007)

    Article  CAS  Google Scholar 

  14. May, P.M.: Improved thermodynamic calculations for concentrated mixed electrolyte systems including ion pairing (or the absence of it). Marine Chem. 99, 62–69 (2006)

    Article  CAS  Google Scholar 

  15. White, D.R., Warner, P.: Standard potential of the Ag/AgCl electrode and dissociation constant of protonated tris(hydroxymethylaminomethane in 50 wt% ethanol/water solvent from 25 to −10 °C). J. Chem. Eng. Data 33, 174–176 (1988)

    Article  CAS  Google Scholar 

  16. Rondinini, S.: pH measurements in non-aqueous and aqueous–organic solvents: definition of standard procedures. Anal. Bioanal. Chem. 374, 813–816 (2002)

    Article  CAS  Google Scholar 

  17. Partanen, J.I., Minkkinen, P.O.: A critical comparison of the equations presented for activities in aqueous sodium and potassium chloride solutions at 298.15 K. J. Chem. Eng. Data 39, 432–437 (1994)

    Article  CAS  Google Scholar 

  18. Pitzer, K.S.: Themodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  19. Pitzer, K.S.: Electrolyte theory—improvements since Debye and Hückel. Acc. Chem. Res. 10, 371–377 (1977)

    Article  CAS  Google Scholar 

  20. Meinrath, G.: Extended traceability of pH: an evaluation of the role of Pitzer’s equations. Anal. Bioanal. Chem. 374, 796–805 (2002)

    Article  CAS  Google Scholar 

  21. Das, B.: Pitzer ion interaction parameters of single aqueous electrolytes at 25 °C. J. Solution Chem. 33, 33–45 (2004)

    Article  CAS  Google Scholar 

  22. Koh, D.S.P., Khoo, K.H., Chan, C.Y.: The application of the Pitzer equations to 1–1 electrolytes in mixed solvents. J. Solution Chem. 14, 635–651 (1985)

    Article  CAS  Google Scholar 

  23. Marshall, S., May, P., Hefter, G.: Least-squares analysis of osmotic coefficient data at 25 °C according to Pitzer equation. 1:1 electrolytes. J. Chem. Eng. Data 40, 1041–1052 (1995)

    Article  CAS  Google Scholar 

  24. Recommendation Internationale OIML R22: Tables Alcoométriques Internationales. Paris (1975)

  25. Cui, R.F., Hu, M.-C., Jin, L.-H., Li, S.N., Jiang, Y.-C., Xia, S.-F.: Activity coefficients of rubidium chloride and cesium chloride in methanol water mixtures and a comparative study of Pitzer and Pitzer–Simonson–Clegg models (298.15 K). Fluid Phase Equilib. 251, 137–144 (2007)

    Article  CAS  Google Scholar 

  26. Lopes, A., Farelo, F., Ferra, M.I.A.: Activity coefficients of sodium chloride in water–ethanol mixtures: a comparative study of Pitzer and Pitzer–Simonson models. J. Solution Chem. 30, 757–770 (2001)

    Article  CAS  Google Scholar 

  27. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2000)

    Google Scholar 

  28. Arce, A., Martinez-Ageitos, J., Soto, A.: VLE for water + ethanol + 1-octanol mixtures. Experimental measurements and correlations. Fluid Phase Equilib. 122, 117–129 (1996)

    Article  CAS  Google Scholar 

  29. Wohlfarth, Ch.: In: Lechner, M.D. (ed.) Static Dielectric Constant of Pure Liquids and Binary Mixtures Landolt-Börnstein, vol. 17. Springer, Berlin (2008). Chap. IV

    Google Scholar 

  30. Åkerlöf, G.: Dielectric constants of some organic solvent–water mixtures at various temperatures. J. Am. Chem. Soc. 54, 4125–4139 (1932)

    Article  Google Scholar 

  31. Bates, R.G.: Determination of pH: Theory and Practice, pp. 292–330. Wiley, New York (1973). Chap. 10

    Google Scholar 

  32. Luca, C., Enea, O.: Tension électrique standard de la cellule Pt,H2/HCl/AgCl,Ag dans l’éthanol–eau 50% à differentes températures de 15 à 35 °C. Electrochim. Acta 15, 1305–1311 (1970)

    Article  CAS  Google Scholar 

  33. Harned, H.S., Allen, D.S.: Standard potential of silver–silver chloride cells in some ethanol and isopropyl alcohol–water solutions at 25 °C. J. Phys. Chem. 58, 191–192 (1954)

    Article  CAS  Google Scholar 

  34. Gillet, H.: Thermodynamique de la solvatation d’acides protoniques et des bases conjuguées en milieux hydroorganiques riches en eau à 25 °C. Can. J. Chem. 68, 655–665 (1990)

    Article  CAS  Google Scholar 

  35. Roy, R.N., Bothwell, A.: Thermodynamic quantities of hydrochloric acid in isopropanol–water, 1,2-dimethoxyethane–water, and tetrahydrofuran–water mixtures. J. Chem. Eng. Data 16, 347–351 (1971)

    Article  CAS  Google Scholar 

  36. Wakisaka, A., Ohki, T.: Phase separation of water–alcohol binary mixtures induced by the microheterogeneity. Faraday Discuss. 129, 231–245 (2005)

    Article  CAS  Google Scholar 

  37. Garci-Mira, M.M., Sanchez-Ruiz, J.M.: pH corrections and protein ionization in water/guanidinium chloride. Biophys. J. 81, 3489–3502 (2001)

    Article  Google Scholar 

  38. Gagliardi, L.G., Castells, C.B., Roses, M.: Acid–base dissociation constants of o-phthalic acid in acetonitrile/water mixtures over the (15 to 50) °C temperature range and related thermodynamic quantities. J. Chem. Eng. Data 55, 85–91 (2010)

    Article  CAS  Google Scholar 

  39. Bates, R.G., Robinson, R.A.: Standardization of silver–silver chloride electrodes from 0 to 60 °C. J. Solution Chem. 9, 455–456 (1980)

    CAS  Google Scholar 

  40. Deyhimi, F., Karimzadeh, Z.: Pitzer and Pitzer–Simonson–Clegg modelling approaches: ternary HCl + ethanol + water electrolyte system. J. Electroanal. Chem. 635, 93–98 (2009)

    Article  CAS  Google Scholar 

  41. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolyte. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  42. ISO International Vocabulary of Metrology—Basic and General Concepts and Associated terms (VIM). International Organisation for Standardisation, Geneva (2008)

  43. Guide to the Expression of Uncertainty in Measurement. ISO, Geneva (1995)

Download references

Acknowledgements

The research leading to these results has received funding from the European Union on the basis of Decision No 912/2009/EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Stoica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoica, D., Yardin, C., Ebrard, G. et al. Evaluation of the Standard Potential of the Ag/AgCl Electrode in a 50 wt-% Water–Ethanol Mixture. J Solution Chem 40, 1819–1834 (2011). https://doi.org/10.1007/s10953-011-9758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9758-3

Keywords

Navigation