Skip to main content
Log in

Heat Capacities and Thermodynamic Properties of a H2O + Li2B4O7 Solution in the Temperature Range from 80 to 356 K

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molar heat capacities of an aqueous Li2B4O7 solution were measured with a precision automated adiabatic calorimeter in the temperature range from 80 to 356 K at a concentration of 0.3492 mol⋅kg−1. The occurrence of a phase transition was determined based on the changes in the curve of the heat capacity with temperature. A phase transition was observed at 271.72 K corresponding to the solid-liquid phase transition; the enthalpy and entropy of the phase transition were evaluated to be Δ H m = 4.110 kJ⋅mol−1 and Δ S m = 15.13 J⋅K−1⋅mol−1, respectively. Using polynomial equations and thermodynamic relationship, the thermodynamic functions [H T H 298.15] and [S T S 298.15] of the aqueous Li2B4O7 solution relative to 298.15 K were calculated in temperature range 80 to 355 K at intervals of 5 K. Values of the relative apparent molar heat capacities of the aqueous Li2B4O7 solution, C p, were calculated at every 5 K in temperature range from 80 to 355 K from the experimental heat capacities of the solution and the heat capacities of pure water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J., Song, P.S., Sun, B.: Synthesis and properties of dimagnesium hexaborate heptadecahydrate. Thermochim. Acta 233, 211–218 (1994)

    Article  CAS  Google Scholar 

  2. Li, J., Li, B., Gao, S.Y.: Thermochemistry of hydrated potassium and sodium borates. J. Chem. Thermodyn. 30, 425–430 (1998)

    Article  Google Scholar 

  3. Li, J., Gao, S.Y., Xia, S.P., Li, B., Hu, R.Z.: Thermochemistry of hydrated calcium borates. J. Chem. Thermodyn. 29, 1071–1075 (1997)

    Article  CAS  Google Scholar 

  4. Li, J., Li, B., Gao, S.Y.: Thermochemistry of hydrated lithium borates. J. Chem. Thermodyn. 30, 681–688 (1998)

    Article  CAS  Google Scholar 

  5. Zhang, A.Y., Yao, Y., Yang, J.M., Song, P.S.: Isopiestic determination of the osmotic coefficients and Pitzer model representation for Li2B4O7(aq) at T = 298.15 K. J. Chem. Thermodyn. 37, 101–109 (2005)

    Article  CAS  Google Scholar 

  6. Tian, H.B., Yao, Y., Song, P.S.: Studies of activity coefficients of LiCl and association equilibrium in LiCl-Li2B4O7-H2O system at 298.15 K Chem. Res. Appl. (CA: Huaxue Yanjiu Yu Yingyong (in Chinese)) 12, 403–408 (2000).

    CAS  Google Scholar 

  7. Yang, J.M., Yao, Y., Zhang, A.Y., Song, P.S.: Isopiestic studies on thermodynamic properties for LiCl−Li2B4O7−H2O system at 298.15 K. J. Salt Lake Res. (in Chinese) 3, 31–38 (2004)

    Google Scholar 

  8. Zhang, A.Y., Yao, Y., Yang, J.M. Song, P.S.: Isopiestic studies of thermodynamic properties and representation with ion-interaction model for Li2B4O7-MgCl2(B)-H2O system at 298.15,K. Acta Chim. Sinica (CA: Huaxue Xuebao (in Chinese)) 62, 1089–1094 (2004)

    CAS  Google Scholar 

  9. Nan, Z.D., Tan, Z.C.: Measurements of the heat capacity of an azeotropic mixture of water, ethanol and toluene from 79 to 320 K. Fluid Phase Equilib. 226, 65–70 (2004)

    Article  CAS  Google Scholar 

  10. Tan, Z.C., Zhou, L.X., Chen, S.X., Yin, A.X., Sun, Y., Ye, J.C., Wang, X.K.: An adiabatic calorimeter between heat capacity measurements from 80 to 400 K- heat capacities of α-alumina and n-heptane. Scientia Sinica (Series B) 26, 1014–1026 (1983)

    CAS  Google Scholar 

  11. Tan, Z.C., Sun, G.Y., Sun, Y., Yin, A.X., Wang, W.B., Ye, J.C., Zhou, L.X.: An adiabatic low-temperature calorimeter for heat capacity measurement of small samples. J. Thermal. Anal. 45, 59–67 (1995)

    CAS  Google Scholar 

  12. Tan, Z.C., Sun, L.X., Meng, S.H., Li, L., Xu, F.P.Y., Liu, B.P., Zhang, J.B.: Heat capacities and thermodynamic functions of p-chlorobenzoic acid. J. Chem. Thermodyn. 34, 1417–1429 (2002)

    Article  CAS  Google Scholar 

  13. Nan, Z.D., Tan, Z.C.: Low-temperature heat capacity and derived thermodynamic functions of cyclohexane. J. Therm. Anal. Cal. 76, 955–963 (2004)

    Article  CAS  Google Scholar 

  14. Tan, Z.C., Xue, B., Lu, S.W., Meng, S.H., Yuan, X.H., Song, Y.J.: Heat capacities and thermodynamic properties of fenpropathrin (C22H23O3N). J. Therm. Anal. Cal. 63, 297–308 (2001)

    Article  CAS  Google Scholar 

  15. Spedding, F.H., Jones, K.C.: Heat capacities of aqueous rare earth chloride solutions at 25°. J. Phys. Chem. 70, 2450–2455 (1966)

    CAS  Google Scholar 

  16. Brown, B.R., Origlia-Luster, M.L., Niederhauser, T.L., Woolley, E.M.: Apparent molar volumes and heat capacities of aqueous lithium chloride, rubidium chloride, and cesium chloride at temperatures from (278.15 to 393.15) K at the pressure 0.35 MPa. J. Chem. Thermodyn. 36, 331–339 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZH., Yin, GY., Tan, ZC. et al. Heat Capacities and Thermodynamic Properties of a H2O + Li2B4O7 Solution in the Temperature Range from 80 to 356 K. J Solution Chem 35, 1347–1355 (2006). https://doi.org/10.1007/s10953-006-9065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9065-6

Key Words

Navigation