Skip to main content

Advertisement

Log in

Densities, Apparent Molar Volumes and Viscosities of Concentrated Aqueous NaNO3 Solutions at Temperatures from 298 to 607 K and at Pressures up to 30 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities of four (2.124, 2.953, 5.015 and 6.271 mol-kg−1) and viscosities of eight (0.265, 0.503, 0.665, 1.412, 2.106, 2.977, 5.015 and 6.271 mol-kg−1) NaNO3(aq) solutions have been measured with a constant-volume piezometer immersed in a precision liquid thermostat and using capillary flow techniques, respectively. Measurements were made at pressures up to 30 MPa. The temperature range was 298–607 K for the density measurements and 298–576 K for the viscosity measurements. The total uncertainty of density, viscosity, pressure, temperature and composition measurements were estimated to be less than 0.06%, 1.6%, 0.05%, 15 mK and 0.02%, respectively. The temperature, pressure and concentration dependence of density and viscosity of NaNO3(aq) solutions were studied. The measured values of density and viscosity of NaNO3(aq) were compared with data and correlations reported in the literature. Apparent molar volumes were derived using the measured density values. The viscosity data have been interpreted in terms of the extended Jones–Dole equation for strong electrolytes. The values of the viscosity A-, B-, D- and F-coefficients of the extended Jones–Dole equation for the relative viscosity (η/η0) of NaNO3(aq) solutions were evaluated as a function of temperature. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen–Dole theory of electrolyte solutions and calculated with the ionic B-coefficient data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. H. Stokes and R. Mills, Viscosity of Electrolytes and Related Properties (Pergamon Press Inc., New York, 1965).

    Google Scholar 

  2. A. L. Horvath, Handbook of Aqueous Electrolyte Solutions: Physical Properties, Estimation Methods and Correlation Methods (Ellis Horwood, West Sussex, England, 1985).

    Google Scholar 

  3. J. Jiang and S. I. Sandler, Ind. Eng. Chem. Res. 42, 6267 (2003).

    Article  Google Scholar 

  4. M. J. C. Esteves, J. E. de M. Cardoso, and O. E. Barcia, Ind. Eng. Chem. Res. 40, 5021 (2001).

    Article  Google Scholar 

  5. A. Chandra and B. Bagchi, J. Phys. Chem. 104, 9067 (2000).

    Google Scholar 

  6. A. Chandra and B. Bagchi, J. Chem. Phys. 113, 3226 (2000).

    Article  Google Scholar 

  7. B. C. Harrap and E. Heymann, Chem. Rev. 48, 45 (1951).

    Article  Google Scholar 

  8. M. M. Lencka, A. Anderko, S. J. Sandlers, and R. D. Young, Int. J. Thermophys. 19, 367 (1998).

    Article  Google Scholar 

  9. I. M. Abdulagatov and N. D. Azizov, J. Chem. Thermodyn. 36, 17 (2003).

    Article  Google Scholar 

  10. I. M. Abdulagatov and N. D. Azizov, J. Solution Chem. 32, 573 (2003).

    Article  Google Scholar 

  11. I. M. Abdulagatov and N. D. Azizov, Int. J. Thermophys. 24, 1581 (2003).

    Article  Google Scholar 

  12. I. M. Abdulagatov and N. D. Azizov, J. Solution Chem. 33, 1305 (2004).

    Article  Google Scholar 

  13. I. M. Abdulagatov and N. D. Azizov, J. Chem. Thermodyn. 36, 829 (2004).

    Article  Google Scholar 

  14. I. M. Abdulagatov and N. D. Azizov, High Temperature-High Pressure (in press).

  15. I. M. Abdulagatov and N. D. Azizov, Fluid Phase Equilib. 216, 189 (2003).

    Article  Google Scholar 

  16. I. M. Abdulagatov and N. D. Azizov, J. Solution Chem. 33, 1501 (2004).

    Article  Google Scholar 

  17. I. M. Abdulagatov, L. A. Akhmedova-Azizova, and N. D. Azizov, J. Chem. Eng. Data 49, 688 (2004).

    Article  Google Scholar 

  18. I. M. Abdulagatov, L. A. Akhmedova-Azizova, and N. D. Azizov, J. Chem. Eng. Data 49, 1727 (2004).

    Article  Google Scholar 

  19. I. M. Abdulagatov and N. D. Azizov, Int. J. Thermophys. (in press).

  20. I. M. Abdulagatov and N. D. Azizov, J. Chem. Eng. Data 48, 1549 (2003).

    Article  Google Scholar 

  21. I. M. Abdulagatov and N. D. Azizov, Ind. Eng. Chem. Res. 44, 416 (2004).

    Article  Google Scholar 

  22. I. M. Abdulagatov, A. Zeinalova, and N. D. Azizov, Fluid Phase Equilib. 227, 57 (2005).

    Article  Google Scholar 

  23. I. M. Abdulagatov, A. A. Zeinalova, and N. D. Azizov, J. Chem. Eng. Data 49, 1444 (2004).

    Article  Google Scholar 

  24. J. N. Sugden, J. Chem. Soc. 174 (1926).

  25. J. N. Pearce and H. Hopson, J. Phys. Chem. 41, 535 (1937).

    Article  Google Scholar 

  26. P. J. Gellings, Rec. Trav. Chim. Pays-Bas 75, 209 (1956).

    Google Scholar 

  27. R. Mitzner and H. Gehlen, Z. Phys. Chem. 221, 410 (1962).

    Google Scholar 

  28. P. I. Protsenko, O. H. Razumovskaya, and T. I. Ivleva, Russ. J. Appl. Chem. 40, 2576 (1967).

    Google Scholar 

  29. L. P. Shpigel and K. P. Mishchenko, Leningrad Technol. Inst. Rep. 21, 249 (1968).

    Google Scholar 

  30. G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer, J. Phys. Chem. 74, 1285 (1970).

    Article  Google Scholar 

  31. L. V. Puchkov and V. G. Matashkin, Russ. J. Appl. Chem. 43, 1864 (1970).

    Google Scholar 

  32. E. M. Kartzmark, Can. J. Chem. 50, 2845 (1972).

    Google Scholar 

  33. M. A. Berchiesi, G. Berchiesi, and G. G. Lobbia, J. Chem. Eng. Data 19, 326 (1974).

    Article  Google Scholar 

  34. M. A. Berchiesi, G. Berchiesi, and G. Vitali, J. Chem. Eng. Data 24, 213 (1979).

    Article  Google Scholar 

  35. O. Enea, P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler, J. Chem. Thermodyn. 9, 731 (1977).

    Google Scholar 

  36. F. J. Millero, G. K. Ward, and P. V. Chetirkin, J. Acoust. Soc. Am. 61, 1492 (1977).

    Google Scholar 

  37. M. Nehma, J. M. Sangster, and H. P. Schreiber, J. Chem. Eng. Data 22, 156 (1977).

    Article  Google Scholar 

  38. A. Roux, G. M. Musbally, G. Perron, and J. E. Desnoyers, Can. J. Chem. 56, 24 (1978).

    Google Scholar 

  39. L. V. Puchkov, V. G. Matashkin, and R. P. Matveeva, Russ. J. Appl. Chem. 52, 1015 (1979).

    Google Scholar 

  40. T. H. Doan and J. Sangster, J. Chem. Eng. Data 26, 141 (1981).

    Article  Google Scholar 

  41. T. Isono, Rikagaku Kenkyusho Hokoku 61, 53 (1985).

    Google Scholar 

  42. T. Isono, J. Chem. Eng. Data 29, 45 (1984).

    Article  Google Scholar 

  43. T. V. Mozharova, G. A. Vernigora, and E. L. Chernn’kaya, NIOKHIM Report No. 81059147, 2 (1984).

  44. I. N. Maksimova, J. S. Pack, and N. N. Pravdin, Electrolyte Properties. Handbook (Metallurgy Press, Moscow, 1987).

    Google Scholar 

  45. O. M. Traktuev and V. P. Ptitzyna, Experimental Study of the Density of Aqueous NaNO3, NaNO2, KNO3, and Their Solutions. Deposited in VINITI, No. 3572-B89, Data 30.05 (1989).

  46. M. Pilar Pena, E. Vercher, and A. Martinez-Andreu, J. Chem. Eng. Data 43, 626 (1998).

    Article  Google Scholar 

  47. B. A. Patterson and E. M. Woolley, J. Chem. Thermodyn. 34, 535 (2002).

    Article  Google Scholar 

  48. M. N. Roy, A. Jha, and A. Choudhury, J. Chem. Eng. Data 49, 291 (2004).

    Article  Google Scholar 

  49. P. Novotny and O. Sohnel, J. Chem. Eng. Data 33, 49 (1988).

    Article  Google Scholar 

  50. M. Laliberte and W. E. Cooper, J. Chem. Eng. Data 49, 1141 (2004).

    Article  Google Scholar 

  51. G. G. Aseyev and I. D. Zaytsev, Volumetric Properties of Electrolyte Solutions. Estimation Methods and Experimental Data (Begell House, New-York, NY, 1996).

    Google Scholar 

  52. I. D. Zaytsev and G. G. Aseyev, Properties Aqueous Solutions of Electrolytes (CRC Press, Boca Raton, London, 1992).

    Google Scholar 

  53. P. M. Mathias, Ind. Eng. Chem. Res. 43, 6247 (2004).

    Article  Google Scholar 

  54. C. V. Suryanarayana and V. K. Venkatesan, Acta Chim. Acad. Sci. Hung. 16, 149 (1958).

    Google Scholar 

  55. M. Tanaka, Nippon Kagaku Zasshi 83, 639 (1962).

    Google Scholar 

  56. B. Sahu and B. Behera, Ind. J. Chem. A 19, 1153 (1980).

    Google Scholar 

  57. L. V. Puchkov and P. M. Sargaev, Russ. J. Appl. Chem. 12, 2637 (1973).

    Google Scholar 

  58. M. D. Monica, A. Ceglie, and A. Agostiano, Electrochim. Acta 29, 933 (1984).

    Article  Google Scholar 

  59. S. P. Moulik and A. K. Rakshit, J. Indian Chem. Soc. 12, 450 (1975).

    Google Scholar 

  60. B. R. Breslau and I. F. Miller, J. Phys. Chem. 74, 1056 (1970).

    Article  Google Scholar 

  61. D. G. Thomas, J. Colloid Sci. 20, 267 (1965).

    Article  Google Scholar 

  62. W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002).

    Article  Google Scholar 

  63. F. G. Keyes and L. B. Smith, Proc. Am. Acad. Arts Sci. 68, 505 (1933).

    Google Scholar 

  64. J. Kestin, J. V. Sengers, B. Kamgar-Parsi, and J. M. H. Levelt Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).

    Google Scholar 

  65. B. S. Krumgalz, R. Pogorelsky, and K. S. Pitzer, J. Phys. Chem. Ref. Data 25, 663 (1966).

    Google Scholar 

  66. O. Redlich and D. M. Mayer, Chem. Rev. 64, 221 (1964).

    Article  Google Scholar 

  67. D. J. Bradley and K. S. Pitzer, J. Phys. Chem. 83, 1599 (1979).

    Article  Google Scholar 

  68. K. Fajans and O. Johnson, J. Am. Chem. Soc. 64, 668 (1942).

    Article  Google Scholar 

  69. F. T. Gucker, J. Phys. Chem. 38, 307 (1934).

    Article  Google Scholar 

  70. F. J. Millero, Chem. Rev. 71, 147 (1971).

    Article  Google Scholar 

  71. F. J. Millero, in Water and Aqueous Solutions, Structure, Thermodynamics, and Transport Properties, R. A. Horne, ed., Chapter 13 (Wiley Interscience, New York, 1972).

    Google Scholar 

  72. F. J. Millero, G. K. Ward, and P. V. Chetirkin, J. Acoust. Soc. Am. 61, 1492 (1977).

    Google Scholar 

  73. J. A. Beattie, in International Critical Tables of Numerical Data, Physics, Chemistry and Technology, E. W. Washburn, ed., Vol. III (McGraw-Hill, New York, 1928).

    Google Scholar 

  74. C. Drucker, Arkiv Kemi. Min. Geol. A 14, 1 (1941).

    Google Scholar 

  75. E. Zen, Geochim. Cosmochim. Acta 12, 103 (1957).

    Article  Google Scholar 

  76. R. J. Meyer, Gmelins Handbuch der Anorganischen Chemie. Natrium. (System-Nummer 21), Suppl. Volume, Sect. 3 (Verlag Chemie, Weinheim, 1966).

  77. R. A. Robinson, J. Am. Chem. Soc. 59, 84 (1937).

    Article  Google Scholar 

  78. E. D. Volova and I. M. Egorov, Leningrad Technol. Inst. Rep. 61, 52 (1960).

    Google Scholar 

  79. R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook, 7th edn. (McGraw-Hill, New York, 1977).

    Google Scholar 

  80. H. Falkenhagen, Theorie der Elektrolyte (S. Hirzel, Leipzig, 1971).

  81. H. Falkenhagen, Z. Phys. 32, 745 (1931).

    Google Scholar 

  82. M. Kaminsky, Z. Phys. Chem. 5, 154 (1955).

    Google Scholar 

  83. M. Kaminsky, Z. Phys. Chem. 12, 206 (1957).

    Google Scholar 

  84. G. Jones and S. K. Talley, J. Am. Chem. Soc. 55, 4124 (1933).

    Article  Google Scholar 

  85. E. Hückel and H. Schaaf, Z. Phys. Chem. N. F. 21, 326 (1959).

    Google Scholar 

  86. M. Kaminsky, Z. Phys. Chem. N. F. 8, 173 (1956).

    Google Scholar 

  87. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Butterworths Scientific Publications, London, 1959).

    Google Scholar 

  88. D. J. P. Out and J. M. Los, J. Solution Chem. 9, 19 (1980).

    Article  Google Scholar 

  89. R. Dordick, L. Korson, and W. Drost-Hansen, J. Colloid Inter. Sci. 72, 206 (1979).

    Article  Google Scholar 

  90. R. S. Dordick and W. Drost-Hansen, J. Phys. Chem. 85, 1086 (1981).

    Article  Google Scholar 

  91. J. E. Desnoyers and G. Perron, J. Solution Chem. 1, 199 (1972).

    Article  Google Scholar 

  92. R. L. Kay, T. Vituccio, C. Zawoyski, and D. F. Evans, J. Phys. Chem. 70, 2336 (1966).

    Google Scholar 

  93. Y. C. Wu, J. Phys. Chem. 72, 2663 (1968).

    Article  Google Scholar 

  94. R. A. Horne, ed., Water and Aqueous Solutions, Structure, Thermodynamics, and Transport Properties (Wiley Interscience, New York, NY, 1972).

    Google Scholar 

  95. H. D. B. Jenkins and Y. Marcus, Chem. Rev. 95, 2695 (1995).

    Article  Google Scholar 

  96. W. M. Cox and J. H. Wolfenden, Proc. R. Soc. A (London) 145, 475 (1934).

    Google Scholar 

  97. L. Onsager and R. M. Fuoss, J. Phys. Chem. 36, 2689 (1932).

    Article  Google Scholar 

  98. H. Falkenhagen and M. Dole, Phys. Z. 30, 611 (1929).

    Google Scholar 

  99. P. Debye and H. Hückel, Z. Phys. 25, 49 (1924).

    Google Scholar 

  100. L. Onsager, Z. Phys. 27, 388 (1926).

    Google Scholar 

  101. G. Jones and M. Dole, J. Am. Chem. Soc. 51, 2950 (1929).

    Article  Google Scholar 

  102. V. V. Kuznetsov, V. N. Trostin, L. A. Khrenova, and G. A. Krestov, Izv. Vys. Ucheb. Zaved. Ser. Khim. Khim. Tekhnol. 26, 1505 (1983).

    Google Scholar 

  103. T. S. Akhundov, A. I. Iskenderov, and A. B. Zeinalova, Izv. Vys. Ucheb. Zaved. Ser. Neft i Gaz. 5, 64 (1991).

    Google Scholar 

  104. T. S. Akhundov, A. B. Zeinalova, A. B. Tairov, and A. I. Iskenderov, Izv. Vys. Ucheb. Zaved. Ser. Neft i Gaz 2, 78 (1991).

    Google Scholar 

  105. V. P. Mashovets, L. V. Puchkov, P. M. Sargaev, and M. K. Feodorov, Russ. J. Appl. Chem. 44, 90 (1971).

    Google Scholar 

  106. A. Einstein, Ann. Phys. 34, 591 (1911).

    Google Scholar 

  107. J. Happel, J. Appl. Phys. 28, 1288 (1957).

    Article  Google Scholar 

  108. J. F. Skinner and R. M. Fuoss, J. Phys. Chem. 67, 2998 (1964).

    Google Scholar 

  109. D. Feakins and D. G. Lawrence, Chem. Soc. A 212 (1966).

  110. J. E. Desnoyers, M. Arel, and P. A. Leduc, Can. J. Chem. 47, 547 (1969).

    Google Scholar 

  111. C. T. Robertson and H. J. U. Tyrrell, J. Chem. Soc. A 1938 (1969).

  112. D. P. Fernandez, A. R. H. Goodwin, E. W. Lemmon, J. M. H. Levelt Sengers, and R. C. Williams, J. Phys. Chem. Ref. Data 26, 1125 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, I.M., Azizov, N.D. Densities, Apparent Molar Volumes and Viscosities of Concentrated Aqueous NaNO3 Solutions at Temperatures from 298 to 607 K and at Pressures up to 30 MPa. J Solution Chem 34, 645–685 (2005). https://doi.org/10.1007/s10953-005-4492-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-4492-3

Key Words

Navigation