Skip to main content
Log in

Earthquake hazard and risk assessment based on Unified Scaling Law for Earthquakes: Greater Caucasus and Crimea

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 – M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law for earthquakes. Phys Rev Lett 88:178501–178504

    Article  Google Scholar 

  • Beauval C, Hainzl S, Scherbaum F (2006) The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation. Bull Seismol Soc Am 96(6):2465–2471. https://doi.org/10.1785/0120060073

    Article  Google Scholar 

  • Beauval C, Bard P-Y, Hainzl S, Guéguen P (2008) Can strong-motion observations be used to constrain probabilistic seismic-hazard estimates? Bull Seismol Soc Am 98(2):509–520. https://doi.org/10.1785/0120070006

    Article  Google Scholar 

  • Christensen K, Danon L, Scanlon T, Bak P (2002) Unified scaling law for earthquakes. Proc Natl Acad Sci 99(suppl 1):2509–2513

    Article  Google Scholar 

  • Davis C, Keilis-Borok V, Kossobokov V, Soloviev A (2012) Advance prediction of the March 11, 2011 Great East Japan earthquake: a missed opportunity for disaster preparedness. Int J Disaster Risk Reduct 1:17–32. https://doi.org/10.1016/j.ijdrr.2012.03.001

    Article  Google Scholar 

  • Federal State Statistics Service, 2016. The population of the Russian Federation for municipalities on January 1, 2016. FSSS: Moscow, Russian Federation. http://www.gks.ru/free_doc/doc_2016/bul_dr/mun_obr2016.rar (assessed 19.09.2016)

  • Gabsatarova, I.P., Daniyalov, M.G., Mekhryushev, D.Yu., Pogoda, E.V., Yatskov, A.Yu., 2015. Northern Caucasus, in: Malovichko, A.A. (Ed.), The earthquakes of Russia in 2013. GS RAS, Obninsk, 16–21

  • Giardini D, Grünthal G, Shedlock K, Zhang P (1999) The GSHAP Global Seismic Hazard Map. Ann Geofis 42(6):1225–1228

    Google Scholar 

  • Giardini D, Grünthal G, Shedlock K, Zhang P (2003) The GSHAP Global Seismic Hazard Map. In: Lee WHK, Kanamori H, Jennings P, Kisslinger C (eds) International handbook of earthquake and engineering seismology, International Geophysics Series 81 B. Academic Press, Amsterdam, pp 1233–1239

    Chapter  Google Scholar 

  • Gorshkov, A., Soloviev, A., 2016. Crimea: morphostructural zoning and seismogenic nodes. 35th General Assembly of the European Seismological Commission, Abstract ESC2016–688. http://meetingorganizer.copernicus.org/ESC2016/ESC2016-688.pdf (accessed 19.10.2016)

  • Gorshkov A, Gvishiani A, Kossobokov V, Rantsman E (1986) Morphostructures and places of earthquakes in the Greater Caucasus. Izvestia Acad. Sci. SSSR: Phys. Earth 9:24–35 (in Russian)

    Google Scholar 

  • Gorshkov A, Kossobokov V, Soloviev A (2003) Chapter 6. Recognition of earthquake-prone areas. In: Keilis-Borok VI, Soloviev AA (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Heidelberg, pp 239–310

    Chapter  Google Scholar 

  • Gridded Population of the World, Version 3 (GPWv3), 2005. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University, http://sedac.ciesin.columbia.edu/gpw (accessed 05.07.2016)

  • Gvishiani A, Gorshkov A, Rantsman E, Cisternas A, Soloviev A (1988) Identification of earthquake-prone-areas in the regions of moderate seismicity. Nauka, Moscow, p 175 (in Russian)

    Google Scholar 

  • Kondorskaya, N.V., Shebalin, N.V., Khrometskaya, Ya.A., Gvishiani, A.D., 1982. New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977. World Data Center A for Solid Earth Geophysics, Report SE-31, 609 pp.

  • Kossobokov, V.G., 2005. Earthquake prediction: principles, implementation, perspectives, in: Earthquake prediction and geodynamic processes. Part 1 (computational seismology, issue 36), Moscow, GEOS, 179 pp. (in Russian)

  • Kossobokov, V.G., Mazhkenov, S.A., 1994. On similarity in the spatial distribution of seismicity, in: Chowdhury, D.K. (Ed.) Computational Seismology and Geodynamics, 1 AGU, The Union, Washington DC, 6–15

  • Kossobokov V, Nekrasova A (2012) Global seismic hazard assessment program maps are erroneous. Seismic Instruments 48(2):162–170. https://doi.org/10.3103/S0747923912020065

    Article  Google Scholar 

  • Kossobokov V, Peresan A, Panza GF (2015) Reality check: seismic hazard models you can trust. Eos 96(13):9–11

    Google Scholar 

  • Nekrasova, A.K., 2008. Unified Scaling Law for Earthquakes: implications for seismic active word zones. (PhD. Thesis), M.V. Lomonosov Moscow State University, Moscow, 136 pp. (in Russian)

  • Nekrasova AK, Kosobokov VG (2005) Temporal variations in the parameters of the Unified Scaling Law for Earthquakes in the eastern part of Honshu Island (Japan). Dokl Earth Sci 405:1352–1356

    Google Scholar 

  • Nekrasova AK, Kosobokov VG (2006) Unified scaling law for earthquakes in the Lake Baikal region. Dokl Earth Sci 407A(3):484–485

    Article  Google Scholar 

  • Nekrasova AK, Kosobokov VG (2016) Unified Scaling Law for Earthquakes in Crimea and Northern Caucasus. Doklady Earth Sci, 2016 470(2):1056–1058. https://doi.org/10.1134/S1028334X16100032

    Article  Google Scholar 

  • Nekrasova A, Kossobokov V (2002) Generalizing the Gutenberg–Richter scaling law. EOS Trans AGU 83(47):NG62B–N0958

    Google Scholar 

  • Nekrasova A, Kossobokov V, Perezan A, Aoudia A, Panza GF (2011) A multiscale application of the Unified Scaling Law for Earthquakes in the Central Mediterranean area and Alpine region. Pure Appl Geophys 168:297–327. https://doi.org/10.1007/s00024-010-0163-4

    Article  Google Scholar 

  • Nekrasova, A., Peresan, A., Kossobokov, V.G., Panza, G.F., 2014. Chapter 7: a new probabilistic shift away from seismic hazard reality in Italy?, in: Aneva, B.. Kouteva-Guentcheva, M. (Eds.), Nonlinear Mathematical Physics and Natural Hazards, Springer Proceedings in Physics, 163, 83–103. https://doi.org/10.1007/978-3-319-14328-6_7

  • Nekrasova A, Kossobokov V, Parvez IA, Tao X (2015) Seismic hazard and risk assessment based on the unified scaling law for earthquakes. Acta Geod Geophys 50(1):21–37. https://doi.org/10.1007/s40328-014-0082-4

    Article  Google Scholar 

  • Panza GF, Romanelli F, Vaccari F (2001) Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation. Adv Geophys 43:1–95

    Article  Google Scholar 

  • Panza, G., Irikura, K., Kouteva-Guentcheva, M., Peresan, A., Wang, Z., Saragoni, R. (Eds.), 2011. Advanced seismic hazard assessment, pure Appl. Geophys, 168(1–4), 752 pp.

  • Panza, G.F., La Mura, C., Peresan, A., Romanelli, F., Vaccari, F., 2012. Seismic hazard scenarios as preventive tools for a disaster resilient society, in: Dmowska, R. (Ed.), Adv. Geophys., Elsevier, London, 93–165

  • Panza GF, Kossobokov V, Peresan A, Nekrasova A (2014) Chapter 12. Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong? In: Wyss M, Shroder J (eds) Earthquake hazard, risk, and disasters. Elsevier, London, pp 309–357

    Chapter  Google Scholar 

  • Parvez IA, Vaccari F, Panza GF (2003) A deterministic seismic hazard map of India and adjacent areas. Geophys J Internat 155:489–508. https://doi.org/10.1046/j.1365-246X.2003.02052.x

    Article  Google Scholar 

  • Parvez IA, Romanelli F, Panza GF (2011) Long period ground motion at bedrock level in Delhi city from Himalayan earthquake scenarios. Pure Appl Geophys 168:409–477. https://doi.org/10.1007/s00024-010-0162-5

    Article  Google Scholar 

  • Parvez IA, Nekrasova A, Kossobokov V (2014) Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unified Scaling Law for Earthquakes. Nat Hazards 71(1):549–562. https://doi.org/10.1007/s11069-013-0926-1

    Article  Google Scholar 

  • Parvez IA, Nekrasova A, Kossobokov VG (2018) Seismic hazard and risk assessment based on Unified Scaling Law for Earthquakes: thirteen principal agglomerations of India. Nat Hazards. https://doi.org/10.1007/s11069-018-3261-8

  • Paskaleva I, Kouteva-Guencheva M, Vaccari F, Panza GF (2011) Some contributions of the neo-deterministic seismic hazard assessment approach to earthquake risk assessment for the city of Sofia. Pure Appl Geophys 168:521–541. https://doi.org/10.1007/s00024-010-0127-8

    Article  Google Scholar 

  • Peresan A, Panza GF (2012) Improving earthquake hazard assessment in Italy: an alternative to “Texas sharpshooting”. EOS Trans Am Geophys Union 93(51):538–539. https://doi.org/10.1029/2012EO510009

    Article  Google Scholar 

  • Peresan A, Zuccolo E, Vaccari F, Gorshkov A, Panza GF (2011) Neo-deterministic seismic hazard and pattern recognition techniques: time-dependent scenarios for North-Eastern Italy. Pure Appl Geophys 168(3):583–607. https://doi.org/10.1007/s00024-010-0166-1

    Article  Google Scholar 

  • Soloviev AA, Novikova OV, Gorshkov AI, Piotrovskaya EP (2013) Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies. Doklady Earth Sc 450:658–660. https://doi.org/10.1134/S1028334X13060159

    Article  Google Scholar 

  • Soloviev AA, Gvishiani AD, Gorshkov AI, Dobrovolsky MN, Novikova OV (2014) Recognition of earthquake prone areas: methodology and analysis of the results. Izvestiya, Physics of the Solid Earth 50(2):151–168. https://doi.org/10.1134/S1069351314020116

    Article  Google Scholar 

  • Utsu, T., 2002. A list of deadly earthquakes in the world: 1500–2000, in: Lee, W.H.K., Kanamori, H., Jennings, P.C., Kisslinger, C. (Eds.), International handbook of earthquake & engineering seismology part A, Academic Press, San Diego, 691–717

  • Wyss M, Nekrasova A, Kossobokov V (2012) Errors in expected human losses due to incorrect seismic hazard estimates. Nat Hazards 62(3):927–935. https://doi.org/10.1007/s11069-012-0125-5

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (Grant No. 15-17-30020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir G. Kossobokov or Anastasia K. Nekrasova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossobokov, V.G., Nekrasova, A.K. Earthquake hazard and risk assessment based on Unified Scaling Law for Earthquakes: Greater Caucasus and Crimea. J Seismol 22, 1157–1169 (2018). https://doi.org/10.1007/s10950-018-9759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-018-9759-4

Keywords

Navigation