Skip to main content
Log in

Tunable Magnetic Phase Change and Polaronic Hopping Conductions in (Sm, Mn) Half Doped LaFeO3 Nanoparticle

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Effect of simultaneous Sm and Mn substitutions around half-doping level on the structural, magnetic and low temperature electronic behaviour of LaFeO3 nanoparticle is extensively studied. The SXRD and FESEM data shows a single-phase nanoparticle of size 33 nm. A drastic magnetic phase change with a low temperature non-ergodic phase is seen compared to the parent LaFeO3 (G-type antiferromagnetic) and this typical behaviour stems from the facts that, simultaneous presence of Sm and Mn alters the Fe crystal environment as well as its multiplicity which leads to improved exchange interactions among different ions. The doped nanoparticle shows a colossal dielectric response. Impedance, modulus spectra and ac conductivity analysis are used to find the conduction process involved in the system and it is related to the hopping conduction through grain and grain boundary resistances. The possibility of the polaronic part may arise from the interactions among mixed-valence state of Fe (Fe3+/Fe2+), Mn (Mn3+/Mn2+) and from the oxygen vacancies. Moreover, the ac-electrical conductivity is analysed using Jonscher’s double-power law and Jump relaxation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors can confirm that all relevant data are included in the article.

References

  1. Parkin, S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B.: J. Appl. Phys. 85, 5828 (1999)

    Article  ADS  Google Scholar 

  2. Li, E., Feng, Z., Kang, B., Zhang, J., Ren, W., Cao, S.: J. Alloys Comp. 811, 152043 (2019)

    Article  Google Scholar 

  3. Cheng, Y., Peng, B., Hu, Z., Zhou, Z., Liu, M.: Phys. Lett. A. 382, 3018 (2018)

    Article  ADS  Google Scholar 

  4. Smolenskii, G.A., Bokov, V.A.: J. Appl. Phys. 35, 915 (1964)

    Article  ADS  Google Scholar 

  5. Zhou, Z., Guo, L., Yang, H., Liu, Q., Ye, F.: J. Alloys. Comp. 583, 21 (2014)

    Article  Google Scholar 

  6. Bhagav, K.K., Ram, S., Majumdar, S.B.: J. Appl. Phys. 115, 204109 (2014)

    Article  ADS  Google Scholar 

  7. Gaikwad, V.M., Acharya, S.A.: RSC Adv. 5, 14366 (2015)

    Article  ADS  Google Scholar 

  8. Lakshmana Rao, T., Pradhan, M.K., Goutam, U.K., Siruguri, V., Reddy, V.R., Dash, S.: J. Appl. Phys. 126, 064104 (2019)

    Article  ADS  Google Scholar 

  9. Koebler, W., Wallan, E., Wilkinson, M.: Phys. Rev. 118, 58 (1960)

    Article  ADS  Google Scholar 

  10. Kuhn, J.N., Matter, P.H., Millet, J.M., Watson, R.B., Ozkan, U.S.: J. Phys. Chem. C 112(2008), 12468 (2008)

    Article  Google Scholar 

  11. Komine, S.E., Iguchi, E.: J. Phys. Chem. Solids 68, 1504 (2007)

    Article  ADS  Google Scholar 

  12. Benali, A., Aziz, S., Bejar, M., Dhahri, E., Graca, M.F.P.: Ceram. Int. 40, 14367 (2014)

    Article  Google Scholar 

  13. Andoulsi, R., Naifer, K.H., Ferid, M.: Powder Technol. 230, 183 (2012)

    Article  Google Scholar 

  14. Natali Sora, I., et al.: J. Solid State Chem. 191, 33 (2012)

    Article  ADS  Google Scholar 

  15. Sun, L., Qin, H., Wang, K., Zhao, M., Hu, J.: Mater. Chem. Phys. 125, 305 (2011)

    Article  Google Scholar 

  16. Bellakki, M.B., Kelly, B.J., Manivannan, V.: J. Alloys. Compd. 489, 64 (2010)

    Article  Google Scholar 

  17. Selvadurai, P.B., Pazhanivelu, A., Jagadeeshwaran, V., Murugaraj, C., Panneer Muthuselvam, R., Chou, F.C.: J. Alloys Compd. 646, 924 (2015)

    Article  Google Scholar 

  18. Wei, X., Wang, Y., Liu, J.P., Xiao, C.M., Zeng, W.W., Ye, S.B.: J. Mater. Sci. 48, 1117 (2013)

    Article  ADS  Google Scholar 

  19. Mukhopadhay, K., Mohapatra, A.S., Chakrabarti, P.K.: J. Magn. Magn. Mater. 329, 133 (2013)

    Article  ADS  Google Scholar 

  20. Tokura, Y.: Colossal Magnetoresistive Oxides, CRC Press (2000)

  21. CRC Handbook of Chemistry and Physics 85th edition (2003)

  22. Carvaja, J.R.: Physica B 192, 55 (1993)

    Article  ADS  Google Scholar 

  23. Joy, P.A., Anil Kumar, P.S., Date, S.K.: J. Phys. Condens. Matter 10, 11049 (1998)

    Article  ADS  Google Scholar 

  24. Li, M., Feterira, A., Sinclair, D.C.: J. Appl. Phys. 105, 114109 (2009)

    Article  ADS  Google Scholar 

  25. Yoshii, K., Ikeda, N., Nakamura, A.: Phys. B 378, 585 (2006)

    Article  ADS  Google Scholar 

  26. Ma, Y., Chen, X.M., Lin, Y.Q.: J. Appl. Phys. 103, 124111 (2008)

    Article  ADS  Google Scholar 

  27. Soman, V.V., Nanoti, V.M., Kulkarni, D.K.: Ceram. Int. 39, 5713 (2013)

    Article  Google Scholar 

  28. Mahato, D.K., Dutta, A., Sinha, T.P.: Solid State Sci. 14, 21 (2012)

    Article  ADS  Google Scholar 

  29. Suchanicz, J.: Mater. Sci. Eng. B 55, 114 (1998)

    Article  Google Scholar 

  30. Driver, M.C., Wright, G.T.: Proc. Phys. Soc. 81, 141 (1963)

    Article  ADS  Google Scholar 

  31. Nadeem, M., Akhtar, M.J., Khan, A.Y., Shaheen, R., Haque, M.N.: Chem. Phys. Lett. 366, 433 (2002)

    Article  ADS  Google Scholar 

  32. Iguchi, E., Nakamura, N., Aoki, A.: J. Phys. Chem. Solids 58, 755 (1997)

    Article  ADS  Google Scholar 

  33. Barsoukov, E., Macdonald, J.R.: Impedance Spectroscopy Theory, Experiments and Applications 2nd edn (Hoboken, NJ: Wiley) 1, 34, 46 (2005)

  34. Kao, K.C.: Dielectric Phenomena in Solids (San Diego, CA: Elsevier) 75–8 (2004)

  35. Kumar, N., Ghosh, A., Choudhary, R.N.P.: Mater. Chem. Phys. 130, 381 (2011)

    Article  Google Scholar 

  36. Sahoo, P.S., Panigrahi, A., Patri, S.K., Choudhary, R.N.P.: Mater. Sci. Pol. 28, 764 (2010)

    Google Scholar 

  37. Di, W., Li, A.: Appl. Phys. A 95, 517 (2009)

    Article  ADS  Google Scholar 

  38. Jonscher, A.K.: The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  39. Li, W., Schwartza, R.W.: Appl. Phys. Lett. 89, 242906 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Dash: wrote the paper, supervision; T. Lakshmana Rao: collected the data, analysis tools. All authors have been personally and actively involved in substantial work leading to the paper, and will take public responsibility for its content.

Corresponding author

Correspondence to S. Dash.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Rao, T.L. Tunable Magnetic Phase Change and Polaronic Hopping Conductions in (Sm, Mn) Half Doped LaFeO3 Nanoparticle. J Supercond Nov Magn 36, 1521–1532 (2023). https://doi.org/10.1007/s10948-023-06595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06595-4

Keywords

Navigation