Skip to main content
Log in

Water-to-PEG Variation: Morphology and Hyperthermic Behaviour of Iron Oxide

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) nanoparticles (NPs) with various morphologies obtained by varying solvent (water)-to-surfactant (polyethylene glycol, PEG) ratios have been investigated for magnetic hyperthermia (MHT) application. The water-to-PEG ratio influenced the size, shape, and chemical composition of the NPs, which changes their magnetic properties and hyperthermia (HPT) response. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies reveal the formation of well crystalline inverse spinel structure of Fe3O4 with some Fe0 phases. Morphology of the NPs varies from nearly spherical to elongated to pseudohexagonal to cluster with an increased concentration of PEG. The NPs possess enhanced saturation magnetization ranging from 90 to 98 emu/g. The HPT studies indicated that the NPs show an enough specific absorption rate (SAR) under alternating magnetic field suitable for biological application with hexagonal Fe3O4 being more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nemati, Z., Alonso, J., Martinez, L.M., Khurshid, H., Garaio, E., Garcia, J.A., Phan, M.H., Srikanth, H.: Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C. 120, 8370–8379 (2016). https://doi.org/10.1021/acs.jpcc.6b01426

    Article  Google Scholar 

  2. Jalilian, A.R., Panahifar, A., Mahmoudi, M., Akhlaghi, M., Simchi, A.: Preparation and biological evaluation of [67Ga]-labeled- superparamagnetic nanoparticles in normal rats. Radiochim. Acta. 97, 51–56 (2009). https://doi.org/10.1524/ract.2009.1566

    Article  Google Scholar 

  3. Barrow, M., Taylor, A., Murray, P., Rosseinsky, M.J., Adams, D.J.: Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem. Soc. Rev. 44, 6733–6748 (2015). https://doi.org/10.1039/c5cs00331h

    Article  Google Scholar 

  4. Lartigue, L., Alloyeau, D., Kolosnjaj-Tabi, J., Javed, Y., Guardia, P., Riedinger, A., Péchoux, C., Pellegrino, T., Wilhelm, C., Gazeau, F.: Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano. 7, 3939–3952 (2013). https://doi.org/10.1021/nn305719y

    Article  Google Scholar 

  5. Suk, J.S., Xu, Q., Kim, N., Hanes, J., Ensign, L.M.: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012

    Article  Google Scholar 

  6. Ling, D., Hyeon, T.: Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 9, 1450–1466 (2013). https://doi.org/10.1002/smll.201202111

    Article  Google Scholar 

  7. Cho, M., Cervadoro, A., Ramirez, M., Stigliano, C., Brazdeikis, A., Colvin, V., Civera, P., Key, J., Decuzzi, P.: Assembly of iron oxide nanocubes for enhanced cancer hyperthermia and magnetic resonance imaging. Nanomaterials. 7, 1–12 (2017). https://doi.org/10.3390/nano7040072

    Article  Google Scholar 

  8. Kumar, C.S.S.R., Mohammad, F.: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011). https://doi.org/10.1016/j.addr.2011.03.008

    Article  Google Scholar 

  9. Fatima, H., Lee, D.W., Yun, H.J., Kim, K.S.: Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Adv. 8, 22917–22923 (2018). https://doi.org/10.1039/c8ra02909a

    Article  Google Scholar 

  10. Khurshid, H., Alonso, J., Nemati, Z., Phan, M.H., Mukherjee, P.: Anisotropy effects in magnetic hyperthermia: a comparison between spherical and cubic exchange-coupled FeO / Fe3O4 nanoparticles. J. Appl. Phys. 117, 1–5 (2015). https://doi.org/10.1063/1.4919250

    Article  Google Scholar 

  11. Guardia, P., Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-, M., Gazeau, F., Manna, L., Pellegrino, T.: Water soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 6, 3080–3091 (2012). https://doi.org/10.1021/nn2048137

    Article  Google Scholar 

  12. Das, R., Alonso, J., Porshokouh, Z.N., Kalappattil, V., Torres, D., Phan, M., Garaio, E., Jose, A., Luis, J., Llamazares, S., Srikanth, H.: Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J. Phys. Chem. C. 120, 10086–10093 (2016). https://doi.org/10.1021/acs.jpcc.6b02006

    Article  Google Scholar 

  13. Simeonidis, K., Morales, M.P., Marciello, M., Angelakeris, M., Chubykalo-fesenko, O., Serantes, D.: In-situ particles reorientation during magnetic hyperthermia application: shape matters twice. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep38382

    Article  Google Scholar 

  14. Sahu, N.K., Gupta, J., Bahadur, D.: PEGylated FePt–Fe 3 O 4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans. 44, 9103–9113 (2015). https://doi.org/10.1039/C4DT03470H

    Article  Google Scholar 

  15. Rani, B., Punniyakoti, S., Sahu, N.K.: Polyol asserted hydrothermal synthesis of SnO2 nanoparticles for the fast adsorption and photocatalytic degradation of methylene blue cationic dye. New J. Chem. 42, 943–954 (2018). https://doi.org/10.1039/c7nj03341a

    Article  Google Scholar 

  16. Li, C., Wei, R., Xu, Y., Sun, A., Wei, L.: Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res. 7, 536–543 (2014). https://doi.org/10.1007/s12274-014-0421-3

    Article  Google Scholar 

  17. Liu, X.L., Fan, H.M., Yi, J.B., Yang, Y., Choo, E., S, G., Xue, J.M., Fana, D.D., Ding, J.: Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J. Mater. Chem. 22, 8235–8244 (2012). https://doi.org/10.1039/c2jm30472d.

    Article  Google Scholar 

  18. Cullity, B.D., Graham, C.D.: Introduction to magnetic materials, vol. 103. Wiley-IEEE Press ISBN 0-471- 47741-9

  19. Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker, J.R., Banaszak Holl, M.M., Orr, B.G.: Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J. Phys. Chem. C. 113, 13593–13599 (2009). https://doi.org/10.1021/jp902953t

    Article  Google Scholar 

  20. Guardia, P., Pérez-Juste, J., Labarta, A., Batlle, X., Liz-Marzán, L.M.: Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. ChemComm. 46, 6108–6110 (2010). https://doi.org/10.1039/c0cc01179g

    Article  Google Scholar 

  21. Ozel, F., Kockar, H., Karaagac, O.: Growth of Iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015). https://doi.org/10.1007/s10948-014-2707-9

    Article  Google Scholar 

Download references

Funding

The authors received financial support from DST-SERB (project grant no. ECR/2016/000301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niroj Kumar Sahu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, S.A., Sharma, M. & Sahu, N.K. Water-to-PEG Variation: Morphology and Hyperthermic Behaviour of Iron Oxide. J Supercond Nov Magn 33, 1603–1609 (2020). https://doi.org/10.1007/s10948-019-05155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05155-z

Keywords

Navigation