Skip to main content
Log in

Lattice Location Effect of Ni50Mn36Sn14 Heusler Alloy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetic properties of Ni50Mn36Sn14 Heusler alloy with L21 structure (L21-NiMnSn HA) are investigated by using the Kaneyoshi approach (KA) within the effective field theory. Mn atoms have two different magnetic properties, and Sn atoms also have two different magnetic properties, according to the lattice location. The L21-NiMnSn HA and its components (Mn1, Mn2, Sn1, Sn2, and Ni) exhibit a second-order phase transition from the ferromagnetic phase to the paramagnetic phase at T C = 2.824. The magnetizations of the HA are obtained as Sn2 > Ni > Mn2 > L21-NiMnSn HA > Sn1 > Mn1 at T < T C. We suggest that the magnetizations of the HA decrease from that of its core atom to its corner atoms. We refer to the different magnetization behavior of the Mn atoms and the Sn atoms of the HA as “lattice location effect (LLE)” because the magnetic difference of the Mn atoms and the Sn atoms of the HA results from their lattice location on the L21 structure. While the coercive fields are the same with each other, their remanence magnetizations are different. Our theoretical results of M(T) and M(H) of L21-NiMnSn HA are in quantitatively good agreement with some experimental results of NiMnSn alloys. Furthermore, the magnetization critical exponent is obtained. Its value is in good agreement with some experimental results and the mean field theory. This case indicates that the model exhibits a universal critical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ullakko, K., Huang, J.K., Kanter, C., O’Handley, R.C., Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. App. Phys. Lett. 69, 1966–1968 (1996)

    Article  ADS  Google Scholar 

  2. Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)

    Article  ADS  Google Scholar 

  3. Karaca, H.E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y.I., Maier, H.J.: Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009)

    Article  Google Scholar 

  4. Planes, A., Mañosa, L., Acet, M.: Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. Journal of Physics: Condensed Matter 21, 233201 (2009)

    ADS  Google Scholar 

  5. Koyama, K., Okada, H., Watanabe, K., Kanomata, T., Kainuma, R., Ito, W., Oikawa, K., Ishida, K.: Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. App. Phys. Lett. 89, 182510 (2006)

    Article  ADS  Google Scholar 

  6. Zhang, B., Zhang, X., Yu, S., Chen, J., Cao, Z., Wu, G.: Giant magnetothermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys. App. Phys. Lett. 91, 012510 (2007)

    Article  ADS  Google Scholar 

  7. Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sanchez-Llamazares, J.L., Flores-Zuniga, H., Frontera, C.: Elastocaloric and magnetocaloric effects in ni-mn-sn(cu) shape-memory alloy. J. App. Phys. 113, 053506 (2013)

    Article  ADS  Google Scholar 

  8. Aydogdu, Y., Turabi, A.S., Kok, M., Aydogdu, A., Yakinci, Z.D., Aksan, M.A., Yakinci, M.E., Karaca, H.E.: The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn. J. Nanoalloys and Compounds 683, 339–345 (2016)

    Article  Google Scholar 

  9. Wang, R.L., Yan, J.B., Marchenkov, V.V., Chen, S.S., Tang, S.L., Yang, C.P.: Effect of Al doping on the martensitic transition and magnetic entropy change in Ni-Mn-Sn alloys. Solid State Commun. 151, 1196–1199 (2011)

    Article  ADS  Google Scholar 

  10. Chernenko, V.A., Barandiaran, J.M., L’vov, V.A., Gutierrez, J., Lazpita, P., Orue, I.: Temperature dependent magnetostrains in polycrystalline magnetic shape memory Heusler alloys. J. Alloys Compd. 577S, S305–S308 (2013)

    Article  Google Scholar 

  11. Kainuma, R., Ito, K., Ito, W., Umetsu, R.Y., Kanomata, T., Ishida, K.: Nimn-based metamagnetic shape memory alloys. Mater. Sci. Forum 635, 23–31 (2010)

    Article  Google Scholar 

  12. de Groot, R.A., Van Engen, P.G., Van Engelen, P.P.T., Buschow, K.H.J.: Magnetic and magneto-optical properties of NiMnSb1−xSnx compounds in relation to their electronic band structure. J. Magn. Magn. Mater. 86, 326–332 (1990)

    Article  ADS  Google Scholar 

  13. Huang, L., Cong, D.Y., Suo, H.L., Wang, Y.D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. App. Phys. Lett. 104, 132407 (2014)

    Article  ADS  Google Scholar 

  14. Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, N., Garcia, C., Gonzalez, J.: Grain oriented nimnsn and nimnin heusler alloys ribbons produced by melt spinning: martensitic transformation and magnetic properties. J. Magn. Magn. Mater. 321, 763–768 (2009)

    Article  ADS  Google Scholar 

  15. Passamani, E.C., Cordova, C., Alves, A.L., Moscon, P.S., Larica, C., Takeuchi, A.Y., Biondo, A.: Magnetic studies of Fe-doped martensitic Ni2Mn1.44Sn0.56 Heusler alloy. J. Phys. D: Appl. Phys. 42, 215006 (2009)

    Article  ADS  Google Scholar 

  16. Llamazares, J.L.S., Zuniga, H.F., Jara, D.R., Valdes, C.F.S., Fernandez, T.G., Ross, C.A., Garcia, C.: Structural and magnetic characterization of the intermartensitic phase transition in NiMnSn Heusler alloy ribbons. J. App. Phys. 113, 17A948 (2013)

    Article  Google Scholar 

  17. Raji, G.R., Uthaman, B., Rajan, R.K., Sharannia, M.P., Thomas, S., Suresh, K.G., Varma, M.R.: Martensitic transition, spin glass behavior and exchange bias in Si substituted Ni50Mn36Sn14 Heusler alloys. RSC Advances 6, 32037–32045 (2016)

    Article  Google Scholar 

  18. Wang, X., Shang, J., Wang, F., Jiang, C., Xu, H.: Origin of unusual properties in the ferromagnetic Heusler alloy Ni–Mn–Sn: a first-principles investigation. Scr. Mater. 89, 33–36 (2014)

    Article  Google Scholar 

  19. Siewert, M., Gruner, M.E., Hucht, A., Herper, H.C., Dannenberg, A., Chakrabarti, A., Singh, N., Arroyave, R., Entel, P.: A first-principles investigation of the compositional dependent properties of magnetic shape memory Heusler alloys. Advanced Engineering Mater. 63, 1–17 (2012)

    Google Scholar 

  20. Xiao, H.B., Yang, C.P., Wang, R.L., Marchenkov, V.V., Luo, X.: Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations. J. App. Phys. 115, 203703 (2014)

    Article  ADS  Google Scholar 

  21. Grünebohm, A., Comtesse, D., Hucht, A., Gruner, M.E., Maslovskaya, A., Entel, P.: Optimizing the magnetocaloric effect in Ni-Mn-Sn by substitution: a first-principles study. IEEE Trans. Magn. 50(11), 2506004 (2014)

    Article  Google Scholar 

  22. Kaneyoshi, T.: Magnetizations of a nanoparticle described by the transverse Ising model. J. Magn. Magn. Mater. 321, 3430–3435 (2009)

    Article  ADS  Google Scholar 

  23. Kaneyoshi, T.: Phase diagrams of a transverse Ising nanowire. J. Magn. Magn. Mater. 322, 3014–3018 (2010)

    Article  ADS  Google Scholar 

  24. Kaneyoshi, T.: Magnetic properties of a cylindrical Ising nanowire (or nanotube). Physica Status Solidi (B) 248, 250–258 (2011)

    Article  ADS  Google Scholar 

  25. Kaneyoshi, T.: The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling. Solid State Commun. 152, 883–886 (2012)

    Article  ADS  Google Scholar 

  26. Kaneyoshi, T.: Ferrimagnetism in a decorated Ising nanowire. Phys. Lett. A 376, 2352–2356 (2012)

    Article  ADS  Google Scholar 

  27. Kaneyoshi, T.: Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: effects of interlayer coupling at the surface. J. Magn. Magn. Mater. 339, 151–156 (2013)

    Article  ADS  Google Scholar 

  28. Kaneyoshi, T.: Characteristic behaviors in an ultrathin Ising film with site-(or bond-) dilution at the surfaces. Physica B 436, 208–214 (2014)

    Article  ADS  Google Scholar 

  29. Kaneyoshi, T.: Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces. J. Magn. Magn. Mater. 321, 3630–3636 (2009)

    Article  ADS  Google Scholar 

  30. Kaneyoshi, T.: Magnetizations of a transverse Ising nanowire. J. Magn. Magn. Mater. 322, 3410–3415 (2010)

    Article  ADS  Google Scholar 

  31. Şarlı, N., Keskin, M.: Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire. Solid State Commun. 152, 354–359 (2012)

    Article  ADS  Google Scholar 

  32. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F.: Phase diagrams of diluted transverse Ising nanowire. J. Magn. Magn. Mater. 336, 75–82 (2013)

    Article  ADS  Google Scholar 

  33. Deviren, B., Şener, Y., Keskin, M.: Dynamic magnetic properties of the kinetic cylindrical Ising nanotube. Physica. A 392, 3969–3983 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zaim, A., Kerouad, M., Boughrara, M.: Effects of the random field on the magnetic behavior of nanowires with core/shell morphology. J. Magn. Magn. Mater. 331, 37–44 (2013)

    Article  ADS  Google Scholar 

  35. Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Eur. Phys. J. B 86, 420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Jiang, W., Li, X.X., Liu, L.M.: Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E. 53, 29–35 (2013)

    Article  Google Scholar 

  37. Keskin, M., Şarlı, N.: Magnetic properties of the binary nickel/bismuth alloy. J. Magn. Magn. Mater 437, 1–6 (2017)

    Article  ADS  Google Scholar 

  38. Wang, C.D., Ma, R.G.: Force induced phase transition of honeycomb-structured ferroelectric thin film. Physica. A 392, 3570–3577 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Magoussi, H., Zaim, A., Kerouad, M.: Effects of the trimodal random field on the magnetic properties of a spin-1 nanotube. Chin. Phys. B 22(11), 116401 (1-8) (2013)

    Article  Google Scholar 

  40. Ertaş, M., Kocakaplan, Y.: Dynamic behaviors of the hexagonal Ising nanowire. Phys. Lett. A 378, 845–850 (2014)

    Article  ADS  MATH  Google Scholar 

  41. Jiang, W., Li, X.-X., Liu, L.-M., Chen, J.-N., Zhang, F.: Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)

    Article  ADS  Google Scholar 

  42. Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)

    Article  ADS  Google Scholar 

  43. Şarlı, N.: Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Phys. E. 83, 22–29 (2016)

    Article  Google Scholar 

  44. Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Physica B 452, 18–22 (2014)

    Article  ADS  Google Scholar 

  45. Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R.: Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A 434, 194–200 (2015)

    Article  ADS  Google Scholar 

  46. Şarlı, N.: Artificial magnetism in a carbon diamond nanolattice with the spin orientation effect. Diam. Relat. Mater. 64, 103–109 (2016)

    Article  ADS  Google Scholar 

  47. Akıncı, Ü.: Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: discrete distributions. J. Magn. Magn. Mater. 324(22), 3951–3960 (2012)

    Article  ADS  Google Scholar 

  48. Akıncı, Ü.: Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire II: continuous distributions. J. Magn. Magn. Mater. 324, 4237–4244 (2012)

    Article  ADS  Google Scholar 

  49. Keskin, M., Şarlı, N., Deviren, B.: Hysteresis behaviors in a cylindrical ising nanowire. Solid State Commun. 151, 1025–1030 (2011)

    Article  ADS  Google Scholar 

  50. Şarlı, N.: Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc nanolattices. J. Magn. Magn. Mater. 374, 238–244 (2015)

    Article  ADS  Google Scholar 

  51. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996)

    MATH  Google Scholar 

  52. Singh, N., Borgahain, B., Srivastava, A.K., Dhar, A., Singh, H.K.: Magnetic nature of austenite-martensite phase transition and spin glass behaviour in nanostructured Mn2Ni1.6Sn0.4 melt-spun ribbons. Appl. Phys. A 122(3), 237 (2016)

    Article  ADS  Google Scholar 

  53. Cong, D.Y., Roth, S., Wang, Y.D.: Superparamagnetism and superspin glass behaviors in multiferroic NiMn-based magnetic shape memory alloys. Phys. Status Solidi (B) 251(10), 2126–2134 (2014)

    Article  ADS  Google Scholar 

  54. Li, Z., Jing, C., Chen, J., Yuan, S., Cao, S., Zhang, J.: Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. Appl. Phys. Lett. 91, 112505 (2007)

    Article  ADS  Google Scholar 

  55. Raji, G.R., Uthaman, B., Thomas, S., Suresh, K.G., Varma, M.R.: Magnetocaloric properties, exchange bias, and critical behavior of Ge substituted Ni50Mn36Sn14 Heusler alloys. J. Appl. Phys 117(10), 103908 (2015)

    Article  ADS  Google Scholar 

  56. Zhang, P., Phan, T.L., Duc, N.H., Dan, N.H., Yu, S.C.: Magnetocaloric and critical behaviors of Heusler Ni0.5Mn0.5−xSnx alloys. IEEE Trans. Magn. 48(11), 3753–3756 (2012)

    Article  ADS  Google Scholar 

  57. Raji, G.R., Paulose, A.P., Job, R.B., Thomas, S., Suresh, K.G., Varma, M.R.: Phase transformations, inverse magnetocaloric effect and critical behavior of Ni50Mn36Sn14−xSix Heusler alloys. Intermetallics 82, 59–67 (2017)

    Article  Google Scholar 

  58. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London (1971)

    Google Scholar 

  59. Huang, K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

Download references

Acknowledgwments

This work was supported by Dumlupınar University Scientific Research Projects Commission (BAP: 2017-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Duran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, A. Lattice Location Effect of Ni50Mn36Sn14 Heusler Alloy. J Supercond Nov Magn 31, 1101–1109 (2018). https://doi.org/10.1007/s10948-017-4274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4274-3

Keywords

Navigation