Skip to main content
Log in

Stability, Magnetism and Hardness of Iron Carbides from First-Principles Calculations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The stability, electronic structure, magnetism and hardness of iron carbides in eight different space groups were investigated by the first-principles calculations. The electron-ion interactions were modelled using the Vanderbilt ultra-soft pseudopotentials (USPP) and norm-conserving pseudopotentials (NCPP). Generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) formulation was used to describe the exchange-correlation energy. The calculated lattice parameters for USPP were in good agreement with experimental results. The formation enthalpy, cohesive energy and elastic constants revealed that with the exception of hex-Fe2C, all Fe-C compounds were both thermodynamically and mechanically stable. Meanwhile, the iron carbides’ bulk and shear moduli were also calculated and compared. Furthermore, magnetic properties were studied and it was found that the average magnetic moment of Fe23 C 6 (2.123 μ B) was the largest among these compounds, with a value close to that of pure α-Fe (2.24 μ B μ. As expected, hex-Fe2C is a paramagnetic metal based on the obtained densities of states and partial densities of states. Furthermore, the magnetic behaviour of iron carbides with polymorphic transformation was almost identical. Finally, several semi-empirical methods were used for estimating the hardness of the iron carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hirotsu, Y., Nagakura, S.: Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering. Acta Metall. 20(4), 645–655 (1972)

    Article  Google Scholar 

  2. Faraoun, H.I., Zhang, Y.D., Esling, C., et al.: Crystalline, electronic, and magnetic structures of 𝜃-Fe3C, χ-Fe5 C 2, and η-Fe2C from first principle calculation. J. Appl. Phys. 99(9), 093508 (2006)

    Article  ADS  Google Scholar 

  3. Inoue, A., Masumoto, T.: Carbide reactions (M3C →M\(_7\textit {C}_{3}\rightarrow \) M\(_{2}3\textit {C}_{6}\rightarrow \textit {M}_{6}\)C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels. Metall. Mater. Trans. A 11(5), 739–747 (1980)

    Article  ADS  Google Scholar 

  4. Hofer, L.J.E., Cohn, E.M.: Saturation magnetizations of iron carbides. J. Am. Chem. Soc. 81(7), 1576–1582 (1959)

    Article  Google Scholar 

  5. Lv, Z.Q., Sun, S.H., Jiang, P., et al.: First-principles study on the structural stability, electronic and magnetic properties of Fe2C. Comp. Mater. Sci. 42(4), 692–697 (2008)

    Article  Google Scholar 

  6. Lv, Z.Q., Zhang, F.C., Sun, S.H., et al.: First-principles study on the mechanical, electronic and magnetic properties of Fe3C. Comp. Mater. Sci. 44(2), 690–694 (2008)

    Article  Google Scholar 

  7. Razumovskiy, V.I., Ghosh, G.: A first-principles study of cementite (Fe3C) and its alloyed counterparts: structural properties, stability, and electronic structure. Comp. Mater. Sci. 110, 169–181 (2015)

    Article  Google Scholar 

  8. Fang, C.M., Van Huis, M.A., Zandbergen, H.W.: Structural, electronic, and magnetic properties of iron carbide Fe7 C 3 phases from first-principles theory. Phys. Rev. B 80(22), 224108 (2009)

    Article  ADS  Google Scholar 

  9. Dick, A., Körmann, F., Hickel, T., et al.: Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations. Phys Rev B 84(12), 125101 (2011)

    Article  ADS  Google Scholar 

  10. Segall, M.D., Lindan, P.J.D., Probert, M.J., et al.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.-Condens. Mat. 14(11), 2717 (2002)

    Article  ADS  Google Scholar 

  11. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  12. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fang, C.M., Van Huis, M.A., Sluiter, M.H.F., et al.: Stability, structure and electronic properties of γ-Fe23C 6 from first-principles theory. Acta Mater. 58(8), 2968–2977 (2010)

    Article  Google Scholar 

  14. Retief, J.J.: Powder diffraction data and Rietveld refinement of Hägg-Carbide, χ-Fe5 C 2. Powder Diffr. 14(2), 130–132 (1999)

    Article  ADS  Google Scholar 

  15. Du Plessis, H.E., De Villiers, J.P.R., Kruger, G.J., et al.: Rietveld and pair distribution function study of Hägg carbide using synchrotron X-ray diffraction. J. Synchrotron Radiat. 18(2), 266–271 (2011)

    Article  Google Scholar 

  16. Chiou, W.C., Carter, E.A.: Structure and stability of Fe3C-cementite surfaces from first principles. Surf Sci. 530(1), 88–100 (2003)

    Article  ADS  Google Scholar 

  17. Watt, J.P.: HashinShtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry. J. Appl. Phys. 51(3), 1520–1524 (1980)

    Article  ADS  Google Scholar 

  18. Beckstein, O., Klepeis, J.E., Hart, G.L.W., et al.: First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Phys. Rev. B 63(13), 134112 (2001)

    Article  ADS  Google Scholar 

  19. Chen, Z.Q., Peng, Y.S., Hu, M., et al.: Elasticity, hardness, and thermal properties of ZrBn, (n = 1, 2, 12). Ceram. Int. 42(6), 6624–6631 (2016)

    Article  Google Scholar 

  20. Wallace, D.C., Callen, H.: Thermodynamics of crystals. Am. J. Phys. 40(13), 1718–1719 (1972)

    Article  ADS  Google Scholar 

  21. Chong, X.Y., Jiang, Y.H., Zhou, R., et al.: First principles study the stability, mechanical and electronic properties of manganese carbides. Comp. Mater. Sci. 87, 19–25 (2014)

    Article  Google Scholar 

  22. Chiou, W.C., Carter, E.A.: Structure and stability of Fe3C-cementite surfaces from first principles. Surf Sci. 530(1), 88–100 (2003)

    Article  ADS  Google Scholar 

  23. Jiang, C., Srinivasan, S.G., Caro, A., et al.: Structural, elastic, and electronic properties of Fe3C from first principles. J. Appl. Phys. 103(4), 043502 (2008)

    Article  ADS  Google Scholar 

  24. Shabanova, I.N., Trapeznikov, V.A.: Temperature dependence of the intensity of the characteristic energy losses of 2p electrons of iron in cementite. J. Exp. Theor. Phys. 18, 18 (1973)

    Google Scholar 

  25. Jhi, S.H., Ihm, J., Louie, S.G., et al.: Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399(6732), 132–134 (1999)

    Article  ADS  Google Scholar 

  26. Tian, Y., Xu, B., Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. H 33, 93–106 (2012)

    Article  Google Scholar 

  27. Gao, F., He, J., Wu, E., et al.: Hardness of covalent crystals. Phys. Rev. Lett. 91(1), 015502 (2003)

    Article  ADS  Google Scholar 

  28. Guo, X., Li, L., Liu, Z., et al.: Hardness of covalent compounds: roles of metallic component and d valence electrons. J. Appl. Phys. 104(2), 023503 (2008)

    Article  ADS  Google Scholar 

  29. Umemoto, M., Todaka, Y., Tsuchiya, K.: Mechanical properties of cementite and fabrication of artificial pearlite. Mater. Sci. Forum. 426(432), 859–864 (2003)

    Article  Google Scholar 

  30. Umemoto, M., Liu, Z.G., Masuyama, K., et al.: Influence of alloy additions on production and properties of bulk cementite. Scr. Mater. 45(4), 391–397 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51601153), by the Fundamental Research Funds for the Central Universities (SWU115068) and by the scientific research project supported by enterprise (2015050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qian Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, L., Chen, ZQ., Xie, Z. et al. Stability, Magnetism and Hardness of Iron Carbides from First-Principles Calculations. J Supercond Nov Magn 31, 353–364 (2018). https://doi.org/10.1007/s10948-017-4213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4213-3

Keywords

Navigation