Skip to main content
Log in

Synthesis and Structural and Magnetic Characterization of BaZn x Fe12−x O19 Hexaferrite: Hyperfine Interactions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

To study the effect of Zn substitution on structural magnetic properties and hyperfine interactions of barium hexaferrite, BaFe12−x Zn x O19 (0.0≤x≤0.3) hexaferrites were synthesized via sol-gel auto-combustion technique. Rietveld analysis of XRD powder patterns confirmed the formation of single-phase hexaferrites for all products. Due to the larger ionic size of Zn2+ as compared with Fe3+, while x increases, the lattice constant parameters increase to a small degree. Nanoplate morphology of the products is presented by SEM analyses. It was observed that both saturation magnetization and coercivity decrease in almost the same manner with zinc concentration for all substitutions. Cation distribution calculations showed that Zn2+ occupies 12k, 4 f 2, 4 f 1, and 2b sites and at the same time pushes Fe3+ ions towards 2a and 12 k 1 sites. From57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting, and hyperfine magnetic field values on Zn2+ substitution have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghasemi, A., Sepelak, V., Liu, X., Morisako, A.: Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites. J. Appl. Phys. 9, 107 (2011) (Art. no. 07A507)

    Google Scholar 

  2. Auwal, I.A., Baykal, A., Güngüneş, H., Shirsath, S. E.: Structural investigation and hyperfine interactions of BaBi x La x Fe12−2x O19 (0.0≤x≤0.5) hexa-ferrites. Ceram. Int. 42, 3380–3388 (2016)

    Article  Google Scholar 

  3. Auwal, I.A., Güngüneş, H., Güner, S., Shirsath, S. E., Sertkol, M., Baykal, A.: Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe12−3x O19 (0.0≤x≤0.33) hexa-ferrites. Mater. Res. Bull. 80, 263–272 (2016)

    Article  Google Scholar 

  4. Yanbing, H., Jian, S., Linab, S., Quanb, T., Qin, L., Hongxiao, J., Dingfeng, J., Hong, B., Hongliang, G., Xinqing, W.: J. Alloy. Compd. 486, 348–351 (2009)

    Article  Google Scholar 

  5. Tehrani, M.K., Ghasemi, A., Moradi, M., Alam, R.S.: Wideband electromagnetic wave absorber using doped barium hexa-ferrite in Ku-band. J. Alloy. Compd. 509(33), 8398 (2011)

    Article  Google Scholar 

  6. Kanagesan, S., Jesurani, S., Velmurugan, R., Prabu, S., Kalaivani, T.: Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexa-ferrite. Mater. Res. Bull. 47, 188 (2012)

    Article  Google Scholar 

  7. Angeles, A.G., Suarez, G.M., Gruskova, A., Papanova, M., Slama, J.: Magnetic studies of Zn–Ti substituted barium hexa-ferrites prepared by mechanical milling. Mater. Lett. 59, 26 (2005)

    Article  Google Scholar 

  8. Cao, L., Zeng, Y., Ding, C., Li, R., Li, C., Zhang, C.: One-step synthesis of single phase micro-sized BaFe12O19 hexaplates via a modified hydrothermal approach. Mater. Chem. Phys. 184, 241–249 (2016)

    Article  Google Scholar 

  9. Fisher, J.G., Sun, H., Kook, Y.G., Kim, J.S., Le, P.G.: Growth of single crystals of BaFe12O19 by solid state crystal growth. J. Magn. Magn. Mater. 416, 384–339 (2016)

    Article  ADS  Google Scholar 

  10. Pullar, R.C., Taylor, M.D., Ktacharya, A.: Novel aqueous sol-gel preparation and characterization of barium M ferrite, BaFe12O19 fibres. J. Mater. Sci. 32, 349–352 (1997)

    Article  ADS  Google Scholar 

  11. Xu, P., Han, X., Zhao, H., Liang, Z., Wang, J.: Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Mater. Lett. 62, 1305–1308 (2008)

    Article  Google Scholar 

  12. Wartewig, P., Krause, M.K., Esquinazi, P., Rosler, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexa-ferrite. J. Magn. Magn. Mater. 192, 83 (1999)

    Article  ADS  Google Scholar 

  13. Lisjak, D., Ovtar, S.: Directed assembly of BaFe12O19 particles and the formation of magnetically oriented films. Langmuir 27, 14014–14024 (2011)

    Article  Google Scholar 

  14. Mallick, K.K., Shepherd, P., Green, R.J.: Dielectric properties of M-type barium hexa-ferrites prepared by co-precipitation. J. Eur. Ceram. Soc. 27, 2045–2052 (2007)

    Article  Google Scholar 

  15. Tang, X., Yang, Y., Hu, K.: Structure and electromagnetic behavior of BaFe122x (Ni0.8Ti x0.7) x O19 in the 2–12 GHz frequency range. J. Alloys Compd. 477, 488–492 (2009)

    Article  Google Scholar 

  16. Fang, H.C., Yang, Z., Ong, C.K., Li, Y., Wang, C.S.: Preparation and magnetic properties of (Zn–Sn) substituted barium hexa-ferrite nanoparticles for magnetic recording. J. Magn. Magn. Mater. 187, 129–135 (1998)

    Article  ADS  Google Scholar 

  17. Suárez, G.M., Vázquez, L.P.R., Huacuz, J.C.C., Fuentes, A.F.: Magnetic properties and microstructure of BaFe11.6−2x Ti x M x O19 (M = Co, Zn, Sn) compounds. Physica B: Condensed Matter 339, 110–118 (2003)

    Article  ADS  Google Scholar 

  18. Vinnik, D.A., Tarasova, A.Yu., Zherebtsov, D.A., Mashkovtseva, L.S., Gudkova, S.A., Nemrava, F.S., Yakushechkina, A.K., Semisalova, A.S., Isaenkod, L.I., Niewa, R.: Cu-substituted barium hexa-ferrite crystal growth and characterization. Ceram. Int. 41, 9172–9176 (2015)

    Article  Google Scholar 

  19. Harward, I., Nie, Y., Chen, D., Baptist, J., Shaw, J.M., Lišková, E.J., Višňovský, Š., Široký, P., Lesňák, M., Pištora, J., Celinski, Z.: Physical properties of Al doped Ba hexagonal ferrite thin films. J. Appl. Phys. 113, 043903 (2013)

    Article  ADS  Google Scholar 

  20. Vinnik, D.A., Semisalova, A.S., Mashkovtseva, L.S., Yakushechkina, A.K., Nemrava, S., Gudkova, S.A., Zherebtsov, D.A., Perov, N.S., Isaenko, L.I., Niew, R.: Growth, structural and magnetic characterization of Zn-substituted barium hexa-ferrite single crystals. Mater. Chem. Phys. 163, 416e420 (2015)

    Article  Google Scholar 

  21. Ong, C.K., Fang, H.C., Yang, Z., Li, Y.: Magnetic relaxation in Zn-Sn-doped barium ferrite nanoparticles for recording. J. Magn. Magn. Mater. 213, 413–417 (2000)

    Article  ADS  Google Scholar 

  22. Fang, H.C., Yang, Z., Ong, C.K., Li, Y., Wang, C.S.: Preparation and magnetic properties of (Zn-Sn) substituted barium hexa-ferrite nanoparticles for magnetic recording. J. Magn. Magn. Mater. 187, 129–135 (1998)

    Article  ADS  Google Scholar 

  23. Vinnik, D.A., Semisalova, A.S., Mashkovtseva, L.S., Yakushechkina, A.K., Nemrava, S., Gudkova, S.A., Zherebtsov, D.A., Perov, N.S., Isaenko, L.I., Niewa, R.: Growth, structural and magnetic characterization of Zn-substituted barium hexa-ferrite single crystals. Mater. Chem. Phys. 163, 416–420 (2015)

    Article  Google Scholar 

  24. Vinnik, D.A., Zherebtsov, D.A., Mashkovtseva, L.S., Nemrava, S., Perov, N.S., Semialova, A.S., Krivtsov, I.V., Isaenko, L.I., Mikhailov, G.G., Niewa, R.: Ti substituted BaFe12O19 singel crystal growth and characterization. Cryst. Growth Des. 14(11), 5834–5839 (2014)

    Article  Google Scholar 

  25. Vinnik, D.A., Zherebtsov, D.A., Mashkovtseva, L.S., Nemrava, S., Semisalova, A.S., Galimov, D.M., Gudkova, S.A., Chumanov, I.V., Isaenko, L.I., Niewa, R.: Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexa-ferrite single crystals. J. Alloys Compd. 628, 480–484 (2015)

    Article  Google Scholar 

  26. Wagner, T.R.: Preparation and crystal structure analysis of magneto-plumbite-type BaGa12O19. J. Solid State Chem. 136, 120 (1998)

    Article  ADS  Google Scholar 

  27. Baykal, A.: Solvothermal synthesis of pure SrFe12O19 hexa-ferrite nanoplatelets. J. Supercond. Nov. Magn. 27(3), 877–880 (2014)

    Article  Google Scholar 

  28. Zhang, Z., Liu, X., Wang, X., Wu, Y., Li, R.: Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexa-ferrites. J. Alloy.Compd. 525, 114–119 (2012)

    Article  Google Scholar 

  29. Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., Salamati, H.: Structural, magnetic and microwave absorption properties of Ce-doped barium hexa-ferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  ADS  Google Scholar 

  30. Auwal, I.A., Güngüneş, H., Baykal, A., Güner, S., Shirsath, S. E., Sertkol, M.: Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexa-ferrite. Ceram. Int. 42, 8627–8635 (2016)

    Article  Google Scholar 

  31. Auwal, I.A., Güner, S., Güngüneş, H., Baykal, A.: Sr1−x La x Fe12O19 (0.0≤x≤0.5) hexa-ferrites: synthesis, characterizations, hyperfine interactions and magneto-optical properties. Ceram. Int. 42, 12995–13003 (2016)

    Article  Google Scholar 

  32. Xu, J., Ji, G., Zou, H., Song, Y., Gan, S.: Influence of Sm-substitution on structure and electromagnetic properties of Ba3−x Sm x Co2Fe24O41 powders. J. Magn. Magn. Mater. 323, 156–161 (2011)

    Article  ADS  Google Scholar 

  33. Wartewig, P., Krause, M.K., Esquinazi, P., Rösler, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192, 83–99 (1999)

    Article  ADS  Google Scholar 

  34. Gorter, E.W.: Saturation magnetization of some ferrimagnetic oxides with hexagonal crystal structures. Proc. IEEE 104B, 225 (1957)

    Google Scholar 

  35. Evans, B.J., Grandjean, F., Lilot, A.P., Vogel, R.H., Gerard, A.: 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M = Sr, Ba). J. Magn. Magn. Mater. 67, 123–129 (1987)

    Article  ADS  Google Scholar 

  36. Chawla, S.K., Mudsainiyan, R.K., Meena, S.S., Yusuf, S.M.: Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCo x Zr x Fe(12−2x)O19. J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  ADS  Google Scholar 

  37. Awawdeh, M., Bsoul, I., Mahmood, S.H.: Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites. J. Alloys Compd. 585, 465–473 (2014)

    Article  Google Scholar 

  38. Gonzalez-Angeles, A., Mendoza-Suarez, G., Gruskova, A., Papanova, M., Slama, J.: Magnetic studies of Zn–Ti-substituted barium hexaferrites prepared by mechanical milling. Mater. Lett. 59, 26–31 (2005)

    Article  Google Scholar 

  39. Solovyova, E.D., Pashkova, E.V., Ivanitski, V.P., Vyunov, O.I., Belous, A.G.: Mössbauer and X-ray diffraction study of Co2+–Si4+ substituted M-type barium hexaferrite BaFe12−2x CO x Si x O19±γ . J. Magn. Magn. Mater. 330, 72–75 (2013)

    Article  ADS  Google Scholar 

  40. Hodges, J.P., Short, S., Jorgensen, J.D., Xiong, X., Dabrovski, B., Mini, S.M., Kimball, C.W.: Evolution of oxygen-vacancy ordered crystal structures in the perovskite series Sr n Fe n O3n−1 (n=2, 4, 8, and \(\infty \)), and the relationship to electronic and magnetic properties. J. Solid State Chem. 151, 190–209 (2000)

    Article  ADS  Google Scholar 

  41. Rensen, J.G., Schulkes, J.A., van Wieringen, J.S.: J. Phys. Colln. C1(32), 924–925 (1971)

  42. Belus, A.G., V’yunov, O.I., Pashkova, E.V., Ivansitskii, V.P., Gavrilenko, O.N.: Mössbauer study and magnetic properties of M-type barium hexaferrite doped with Co +Ti and Bi + Ti ions. J. Phys. Chem. B 110, 26477–26481 (2006)

    Article  Google Scholar 

  43. Handbook of magnetic materials, vol. 16 Edited by KHJ Buschov, p. 140

  44. Lee, S.W., An, S.Y., Shim, I.-B., Kim, C.S.: Mössbauer studies of La–Zn substitution effect in strontium ferrite nanoparticles. J. Magn. Magn. Mater. 231, 290–291 (2005)

    Google Scholar 

  45. Sözeri, H.: Simple recipe to synthesize single-domain BaFe12O19 with high saturation magnetization. J. Magn. Magn. Mater. 321, 2717–2722 (2009)

    Article  ADS  Google Scholar 

  46. Haneda, K., Kojima, H.: Magnetization reversal process in chemically precipitated and ordinary prepared BaFe12O19. J. Appl. Phys. 44(8), 3760 (1973)

    Article  ADS  Google Scholar 

  47. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27(4), 3475–3518 (1991)

    Article  ADS  Google Scholar 

  48. Baniasadi, A., Ghasemi, A., Nemati, A., Ghadikolaei, M.A., Paimozd, E.: Effect of Ti–Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexa-ferrite. J. Alloys Compd. 583, 325–328 (2014)

    Article  Google Scholar 

  49. Kanagesan, S., Jesurani, S., Velmurugan, R., Prabu, S., Kalaivani, T.: Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexa-ferrite. Mater. Res. Bull. 47, 188–192 (2012)

    Article  Google Scholar 

  50. Gordani, G.R., Ghasemi, A., Saidi, A.: Enhanced magnetic properties of substituted Sr-hexa-ferrite nanoparticles synthesized by co-precipitation method. Ceram. Int. 40, 4945–4952 (2014)

    Article  Google Scholar 

  51. Chawla, S.K., Mudsainiyan, R.K., Meena, S.S., Yusuf, S.M.: Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexa-ferrites BaCo x Zr x Fe12−2x O19. J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  ADS  Google Scholar 

  52. Auwal, I.A., Baykal, A., Güngüneş, H., Shirsath, S. E.: Structural investigation and hyperfine interactions of BaBi x La x Fe12−2x O19 (0.0≤x≤0.5) hexaferrites. Ceram. Int. 42, 3380–3387 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baykal, A., Sözeri, H., Güngüneş, H. et al. Synthesis and Structural and Magnetic Characterization of BaZn x Fe12−x O19 Hexaferrite: Hyperfine Interactions. J Supercond Nov Magn 30, 1585–1592 (2017). https://doi.org/10.1007/s10948-016-3958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3958-4

Keywords

Navigation