Skip to main content
Log in

Effect of the Silica Cover on the Properties of Co 3 O 4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cobalt oxide nanoparticles were functionalized with sodium citrate and coated with a silica shell (Co3O4@Q@SiO2). Different experimental configurations were tested in order to obtain low-sized cobalt oxide nanoparticles with high crystallinity, using the chemical reduction-oxidation method. Then, the nanoparticles were coated with silica using the Stöber method, obtaining a silica cover on top of the cobalt oxide nanoparticle surface with a few nanometers thickness. This method permits the functionalization of the nanoparticles at the time of coating. Results show that with a heat treatment of 500 C, high-crystallinity cobalt oxide nanoparticles are obtained with a spherical shape and an average diameter of 30 nm, whereas the silica cover has 5 nm thickness. Evidence of nanoparticle functionalization was obtained through the measurement of the absorption bands of the functional groups of the sodium citrate with a silica cover. In addition, coated nanoparticles show a reduction of their magnetic remanence as well as their coercivity with respect to the uncoated nanoparticles since silica acts as barrier avoiding superficial contact between magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wen-hui, L.: Microwave-assisted hydrothermal synthesis and optical property of Co3O4 nanorods. Mater. Lett. (2008). doi:10.1016/j.matlet.2008.06.032

    Google Scholar 

  2. Liu, Y., Mi, C., Su, L., Zhang, X.: Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta (2008). doi:10.1016/j.electacta.2007.10.020

    Google Scholar 

  3. Sun, G., Zhang, X., Cao, M., Wei, B., Hu, C.: Facile synthesis, characterization, and microwave absorbability of CoO nanobelts and submicrometer spheres. J. Phys. Chem. C (2009). doi:10.1021/jp8092447

    Google Scholar 

  4. Barrera, E., González, I., Viveros, T.: A new cobalt oxide electrodeposit bath for solar absorbers (1998). doi:10.1016/S0927-0248(97)00209-2

  5. Tanabe, K.: Optical radiation efficiencies of metal nanoparticles for optoelectronic applications. Mater. Lett. (2007). doi:10.1016/j.matlet.2007.02.053

    Google Scholar 

  6. Švegl, F., Orel, B., Hutchins, M.G., Kalcher, K.: Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc. (1996). doi:10.1149/1.1836675

    Google Scholar 

  7. Maruyama, T., Arai, S.: Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc. (1996). doi:10.1149/1.1836646

    Google Scholar 

  8. Sugimoto, M.: The past, present, and future of ferrites. J. Am. Ceram. Soc. doi:10.1111/j.1551-2916.1999.tb20058.x

  9. Colvin, V.L., Schlamp, M.C., Alivisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature (1994). doi:10.1038/370354a0

    Google Scholar 

  10. Okabe, H., Akimitsu, J., Kubodera, T., Matoba, M., Kyomen, T., Itoh, M.: Low-temperature magnetoresistance of layered cobalt oxides NaxCoO2. Phys. B Condens. Matter (2006). doi:10.1016/j.physb.2006.01.319

    Google Scholar 

  11. Verelst, M.T., Ely, O., Amiens, C., Snoeck, E., Lecante, P., Mosset, A., Respaud, M., Brotom, J.M., Chaudret, B.: Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticles. Chem. Mater. doi:10.1021/cm991003h

  12. Wagner, J., Autenrieth, T., Hempelmann, R.: Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2 O 4–SiO2 core shell particles]. J. Magn. Magn. Mater. (2002). doi:10.1016/S0304-8853(02)00729-1

  13. Hoffman, A.J., Mills, G., Yee, H., Hoffmann, M.R.: Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J. Phys. Chem. (1992). doi:10.1021/j100192a067

    Google Scholar 

  14. Joo, S.H., Choi, S.J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., Ryoo, R.: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature (2001). doi:10.1038/35084046

    Google Scholar 

  15. Brus, L.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. (1986). doi:10.1021/j100403a003

    Google Scholar 

  16. Salimi, A., Hallaj, R., Mamkhezri, H., Hosaini, T.: Electrochemical properties and electrocatalytic activity of FAD immobilized onto cobalt oxide nanoparticles: application to nitrite detection. J. Electroanal. Chem. (2008). doi:10.1016/j.jelechem.2008.03.003

    Google Scholar 

  17. Natile, M.M., Glisenti, A.: Study of surface reactivity of cobalt oxides:? interaction with methanol. Chem. Mater. (2002). doi:10.1021/cm0211150

    Google Scholar 

  18. Chen, H.R., Shi, J.L., Li, Y.S., Yan, J.N., Hua, Z.L., Chen, H.G., Yan, D.S.: A new method for the synthesis of highly dispersive and catalytically active platinum nanoparticles confined in mesoporous zirconia. Adv. Mater. (2003). doi:10.1002/adma.200304973

    Google Scholar 

  19. Hu, C., Xu, K., Gu, H., Zheng, R., Liu, H., Zhang, X.: Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. (2004). doi:10.1021/ja0464802

    Google Scholar 

  20. Hu, C., Xu, K., Gu, H., Zhong, X., Guo, Z., Zheng, R., Liu, H., Zhang, X., Xu, B.: Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. (2004). doi:10.1021/ja031776d

    Google Scholar 

  21. Santra, S., Wang, K., Tapec, R., Tan, W.: Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt. (2001). doi:10.1117/1.1353590

    Google Scholar 

  22. Lübbe, A.S., Alexiou, C., Bergemann, C.: Clinical applications of magnetic drug targeting. J. Surg. Res. (2001). doi:10.1006/jsre.2000.6030

    Google Scholar 

  23. Nel, A., Xia, T., Madler, L., Li, N.: Toxic potential of materials at the nanolevel. Science (2006). doi:10.1126/science.1114397

    Google Scholar 

  24. Mandal, S., Phadtare, S., Sastry, M.: Interfacing biology with nanoparticles. Current Appl. Phys. (2005). doi:10.1016/j.cap.2004.06.006

    Google Scholar 

  25. Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M.: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. (2011). doi:10.1016/j.cis.2011.04.003

    Google Scholar 

  26. Ondeck, C.L., Habib, A.H., Ohodnicki, P., Miller, K., Sawyer, C.A., Chaudhary, P., McHenry, M.E.: Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J. Appl. Phys. (2009). doi:10.1063/1.3076043

    Google Scholar 

  27. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. (2003). doi:10.1088/0022-3727/36/13/201

    Google Scholar 

  28. Ruiz Moreno, R.G., Martinez, A.I., Castro-Rodriguez, R., Bartolo, P.: Synthesis and characterization of citrate coated magnetite nanoparticles. J. Supercond. Novel Mater. (2013). doi:10.1007/s10948-012-1790-z

    Google Scholar 

  29. Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. (2005). doi:10.1263/jbb.100.1

    Google Scholar 

  30. Parkes, L.M., Hodgson, R., Tung, L.T., Robinson, I., Fernig, D.G., Thanh, N.T.: Current awareness in contrast media and molecular imaging. Contrast Media Mol. Imag. (2008). doi:10.1002/cmmi.245

    Google Scholar 

  31. Prabhakar, P.K., Vijayaraghavan, S., Philip, J., Doble, M.: Biocompatibility studies of functionalized CoFe2 O 4 magnetic nanoparticles (2011). doi:10.2174/157341311795542435

  32. Liz-Marzán, L.M., Giersig, M., Mulvaney, P.: Synthesis of nanosized gold–silica core–shell particles. Langmuir (1996). doi:10.1021/la9601871

    Google Scholar 

  33. Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir (1998). doi:10.1021/la980047m

    Google Scholar 

  34. Wu, M., Zhang, Y.D., Hui, S., Xiao, T.D., Ge, S., Hines, W.A., Budnick, J.I.: Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. (2002). doi:10.1063/1.1484248 10.1063/1.1484248

  35. Liz-Marzán, L.M., Mulvaney, P.: The assembly of coated nanocrystals. J. Phys. Chem. B (2003). doi:10.1021/jp027835b

    Google Scholar 

  36. Thomas, L.V., Arun, U., Remya, S., Nair, P.D.: A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering. J. Mater. Sci.: Mater. Med. (2009). doi:10.1007/s10856-008-3599-7

    Google Scholar 

  37. Sun, Y., Duan, L., Guo, Z., DuanMu, Y., Ma, M., Xu, L., Zhang, Y., Gu, N.: An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J. Magn. Magn. Mater. (2005). doi:10.1016/j.jmmm.2004.07.016

    Google Scholar 

  38. Ichiyanagi, Y., Moritake, S., Taira, S., Setou, M.: Functional magnetic nanoparticles for medical application. J. Magn. Mater. (2007). doi:10.1016/j.jmmm.2006.11.083

    Google Scholar 

  39. Aslam, M., Fu, L., Li, S., Dravid, V.P.: Silica encapsulation and magnetic properties of FePt nanoparticles. J. Colloid. Interface Sci. (2005). doi:10.1016/j.jcis.2005.04.050

    Google Scholar 

  40. Hao, R., Xing, R.J., Xu, Z.C., Hou, Y.L., Gao, S., Sun, S.H.: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. (2010). doi:10.1002/adma.201000260

    Google Scholar 

  41. Kazemzadeh, H., Ataie, A., Rashchi, F.: In situ synthesis of silica-coated magnetite nanoparticles by reverse coprecipitation method. J. Supercond. Novel Magn. (2012). doi:10.1007/s10948-011-1270-x

    Google Scholar 

  42. Sulek, F., Drofenik, M., Habulin, M., Knez, Z.: Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase. J. Magn. Magn. Mater. (2010). doi:10.1016/j.jmmm.2009.07.075

    Google Scholar 

  43. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. (1973). doi:10.1038/physci241020a0

    Google Scholar 

  44. Brust, M., Walker, M., Bethell, D., Schiffrin, D., Whyman, W.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc., Chem. Commun. (1994). doi:10.1039/C39940000801

    Google Scholar 

  45. Vejpravova, J., Sechovsky, V., Plocek, J., Niznansky, D., Hutlova, A., Rehspringer, J.L.: Magnetism of sol-gel fabricated CoFe2 O 4/SiO2 nanocomposites. J. Appl. Phys. (2005). doi:10.1063/1.1929849

    Google Scholar 

  46. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. (1968). doi:10.1016/0021-9797(68)90272-5

    Google Scholar 

  47. Bishop, L.M., Yeager, J.C., Chen, X., Wheeler, J.N., Torelli, M.D., Benson, M.C., Burke, S.D., Pedersen, J.A., Hamers, R.J.: A citric acid-derived ligand for modular functionalization of metal oxide surfaces via “Click” chemistry. Langmuir (2012). doi:10.1021/la204145t

    Google Scholar 

  48. Mojic, B., Giannakopoulos, K.P., Cvejic, Z., Srdic, V.V.: Silica coated ferrite nanoparticles: influence of citrate functionalization procedure on final particle morphology. Ceramics Inter. (2012). doi:10.1016/j.ceramint.2012.05.050

    Google Scholar 

  49. Kobayashi, Y., Horie, M., Konno, M., Rodríguez-González, B., Liz-Marzán, L.M.: Preparation and properties of silica-coated cobalt nanoparticles. J. Phys. Chem. B (2003). doi:10.1021/jp027759c

    Google Scholar 

  50. Gupta, R.K., Sinha, A.K., Raja Sekhar, B.N., Srivastava, A.K., Shingh, G., Deb, S.K.: Synthesis and characterization of various phases of cobalt oxide nanoparticles using inorganic precursor. Appl. Phys. A (2011). doi:10.1007/s00339-011-6311-6

    Google Scholar 

  51. Gu, F., Li, C., Hu, Y., Zhang, L.: Synthesis and optical characterization of Co3O4 nanocrystals. J. Cryst. Growth (2007). doi:10.1016/j.jcrysgro.2007.03.040

    Google Scholar 

  52. Shinde, V.R., Mahadik, S.B., Gujar, T.P., Lokhande, C.D.: Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. (2006). doi:10.1016/j.apsusc.2005.09.004

    Google Scholar 

  53. Jong-Il, P., Jinwoo, C.: Synthesis of “solid solution” and “core-shell” type cobalt–platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. (2001). doi:10.1021/ja0156340

    Google Scholar 

  54. Wong, Y.J., Zhu, L., Teo, W.S., Tan, Y.W., Yang, Y., Wang, C., Chen, H.: Revisiting the Stöber method: inhomogeneity in silica shells. J. Am. Chem. Soc. (2011). doi:10.1021/ja203316q

    Google Scholar 

  55. Yang, M., Chen, G., Zhao, Y., Silber, G., Wang, Y., Xing, S., Han, Y., Chen, H.: Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys. Chem. Chem. Phys. (2010). doi:10.1039/C0CP00127A

    Google Scholar 

  56. Gulino, A., Dapporto, P., Rossi, P., Anastasia, G., Fragala, I.: Viable route for the synthesis of the anhydrous Co(hfac)2 adduct with monoglyme: a useful precursor for thin films of CoO. J. Mater. Chem. (2004). doi:10.1039/B404307C

    Google Scholar 

  57. Reetz, M.T., Quaiser, S.A., Winter, M., Becker, J.A., Joerg, A., Schaefer, R., Stimming, U., Marmann, A., Vogel, R., Konno, T.: Nanostructured metal oxide clusters by oxidation of stabilized metal clusters with air. Angew. Chem. Int. Ed. (1996). doi:10.1002/anie.199620921

    Google Scholar 

  58. Barreca, D., Massignan, C., Daolio, S., Fabrizio, M., Piccirillo, C., Armelao, L., Tondello, E.: Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemical vapor deposition. Chem. Mater. (2001). doi:10.1021/cm001041x

    Google Scholar 

  59. Kandula, S., Jeevanandam, P.: A facile synthetic approach for SiO2@Co3O4 core–shell nanorattles with enhanced peroxidase-like activity. RSC Adv. (2015). doi:10.1039/C4RA12596G

    Google Scholar 

  60. Max, J.J., Chapados, C.: Infrared spectroscopy of aqueous carboxylic acids:? comparison between different acids and their salts. J. Phys. Chem. A (2004). doi:10.1021/jp036401t

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by Conacyt Mexico through the J. Román de Alba scholarship 273882. Thanks to C. Medina for the thoughtful comments on the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Guerrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Alba, J.R., Martínez, J.R., Guerrero, A.L. et al. Effect of the Silica Cover on the Properties of Co 3 O 4 Nanoparticles. J Supercond Nov Magn 29, 2651–2658 (2016). https://doi.org/10.1007/s10948-016-3595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3595-y

Keywords

Navigation