Skip to main content

Advertisement

Log in

Electron Transport Through Thiolized Gold Nanoparticles in Single-Electron Transistor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We propose an analytical parametric model for defining energy spectra of nanoparticles with a number of atoms of up to 3,300. This allows us to perform Monte-Carlo simulations for single-electron transistor (SET) based on gold nanoparticles with a size of up to 5.2 nm at temperatures from 0.1 to 300 K. At the first step, energy spectra were calculated for isomers of gold nanoparticles, consisting of up to 33 gold atoms using methods of quantum mechanics: density functional theory (DFT) with LANL2DZ basis set for “geometry” optimization; unrestricted Hartree–Fock method (UHF)x with SBKJC basis set to evaluate energy parameters of nanoobjects, which include gold atoms with many electrons. It was found that the general structure of the energy spectra changes unsignificantly if the number of atoms is greater than 27. Moreover, the size of the energy gap and the position of energy levels in it are linear functions of one parameter—the total electric charge of the nanoparticle. These features of energy spectra allowed us to perform calculations of the transport characteristics for a real SET using gold nanoparticle as a central conducting island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Spin multiplicity M equals the sum of all electrons spins in the system: \(M = 2S+1 =2{\sum }_{i}m_{s}+1\), where S – angular spin moment, m s – spin value of s-th electron, \(m_{s}=\pm \frac {1}{2}\) [19].

References

  1. Likharev, K.: Proc. IEEE 87, 606 (1999)

    Article  Google Scholar 

  2. Likharev, K.K., Strukov, D.B.: CMOL: devices, circuits, and architectures. In: Introduction to Molecular Electronics, p. 2005. Springer, Berlin

  3. Dagesyan, S., Soldatov, E., Stepanov, A.: Bulletin of the russian academy of sciences. Physics 78 (2), 139 (2014)

    Google Scholar 

  4. Gubin, S., Gulayev, Y., Khomutov, G., Kislov, V., Kolesov, V., Soldatov, E., Sulaimankulov, K., Trifonov, A.: Nanotechnology 13, 185 (2002)

    Article  ADS  Google Scholar 

  5. Kano, S., Azuma, Y., Maeda, K., Tanaka, D., Sakamoto, M., Teranishi, T., Smith, L.W., Smith, C.G., Majima, Y.: ACS Nano 6 (11), 9972 (2012)

    Article  Google Scholar 

  6. Maeda, K., Okabayashi, N., Kano, S., Takeshita, S., Tanaka, D., Sakamoto, M., Teranishi, T., Majima, Y.: ACS Nano 6 (3), 2798 (2012)

    Article  Google Scholar 

  7. Khondaker, S.I., Luo, K., Yao, Z.: Nanotechnology 21 (9), 095204 (2010)

    Article  ADS  Google Scholar 

  8. Kuemmeth, F., Bolotin, K.I., Shi, S.F., Ralph, D.C.: Nano. Lett. 8 (12), 4506 (2008)

    Article  ADS  Google Scholar 

  9. Van Alsenoy, C., Yu, C.H., Peeters, A., Martin, J.M.L., Schoer, L.: J. Phys. Chem. A 102 (12), 2246 (1998)

    Article  Google Scholar 

  10. Gerasimov, Y.S., Shorokhov, V.V., Soldatov, E.S., Snigirev, O.V.: Proc. SPIE 7521, 75210U (2009)

    Article  ADS  Google Scholar 

  11. Gerasimov, Y., Shorokhov, V., Maresov, A., Soldatov, E., Snigirev, O.: Journal of Radio Electronics 2 (2) (2013)

  12. Granovsky, A.A.: Firefly version 7.1.g. http://classic.chem.msu.su/gran/firefly/index.html

  13. Stevens, W.J., Basch, H., Krauss, M.: J. Chem. Phys. 81 (12), 6026 (1984)

    Article  ADS  Google Scholar 

  14. Gerasimov, Y.S., Shorokhov, V.V., Soldatov, E.S., Snigirev, O.V.: Proc. SPIE, International Conference Micro- and Nano-Electronics 2012. 8700, 870015 (2013)

    Article  Google Scholar 

  15. Shorokhov, V., Soldatov, E., Elenskiy, V.: Micro- and Nanoelectronics 2007. 7025(1), 70250N (2008)

  16. Gubin, S.: Himiya klasterov (Moscow: Nauka) (1987)

  17. Chaki, N.K., Singh, P., Dharmadhikari, C.V., Vijayamohanan, K.P.: Langmuir 20 (23), 10208 (2004). PMID: 15518515

    Article  Google Scholar 

  18. Zhang, X.A., Chi, Y.Q., Fang, J.Y., Zhong, H.Q., Chang, S.L., Fang, L., Qin, S.Q.: Phys. Lett. A 374 (48), 4880 (2010)

    Article  ADS  Google Scholar 

  19. Landau, L., Livshic, E.: 3rd edn. Teoreticheskaya fizika. Kvantovaya mekhanika (nerelyativistskaya teoriya), vol. 3. Moscow: “Nauka” (1989)

  20. Rautian, S.G., Yatsenko, A.S.: Phys. Usp. 42 (2), 205 (1999)

    Article  ADS  Google Scholar 

  21. Okabayashi, N., Maeda, K., Muraki, T., Tanaka, D., Sakamoto, M., Teranishi, T., Majima, Y.: Appl. Phys. Lett. 100 (3), 033101 (2012)

    Article  ADS  Google Scholar 

  22. Presnov, D., Shorokhov, V., Amitonov, S., Trifonov, A., Krupenin, V.: Abstracts of the 8-th General Meeting of Asian Consortium on Comutation Material Science. IMR, Tohoku University, Japan (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Gerasimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, Y.S., Shorokhov, V.V. & Snigirev, O.V. Electron Transport Through Thiolized Gold Nanoparticles in Single-Electron Transistor. J Supercond Nov Magn 28, 781–786 (2015). https://doi.org/10.1007/s10948-014-2661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2661-6

Keywords

Navigation