Skip to main content
Log in

Nonlinear Elastic Properties of Superconducting Antiperovskites MNNi3 (M =Zn, Cd, Mg, Al, Ga, and In) from First Principles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We present theoretical studies for the third-order elastic constants (TOECs) of superconducting antiperovskites MNNi 3 (M = Zn, Cd, Mg, Al, Ga, and In) using the density functional theory (DFT) and homogeneous deformation method. From the nonlinear least-square fitting, the elastic constants are extracted from a polynomial fit to the calculated strain-energy data. Calculated second-order elastic constants (SOECs) are compared with the previous theoretical calculations, and a very good agreement was found. The nonlinear effects often play an important role when the finite strains are larger than approximately 2.5 %. Besides, we have computed the pressure derivatives of SOECs and provided rough estimations for the Grüneisen constants of long-wavelength acoustic modes by using the calculated TOECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Born, M., Huang, K.: Dynamical Theory of Crystal Latticess. Oxford University Press, London (1956)

    Google Scholar 

  2. Wallace, D.C.: Thermodynamics of Crystals. Dover, New York (1998)

    Google Scholar 

  3. Birch, F.: Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  4. Murnaghan, F.: Finite Deformation of an Elastic Solid. Wiley, New York (1951)

    MATH  Google Scholar 

  5. Bhagavantam, S.: Crystal Symmetry and Physical Properties. Academic, New York (1966)

    Google Scholar 

  6. Thurston, R., Brugger, K.: Phys. Rev. 133, A1604 (1964)

    Article  ADS  Google Scholar 

  7. Brugger, K.: Phys. Rev. 133, A1611 (1964)

    Article  ADS  Google Scholar 

  8. Hiki, Y., Rev, Annu.: Mater. Sci. 11, 51 (1981)

    Article  Google Scholar 

  9. Zhang, X.D., Jiang, Z.Y., Zhou, B., Hou, Z.F., Hou, Y.Q.: Chin. Phys. Lett. 28, 076201 (2011)

    Article  ADS  Google Scholar 

  10. Keating, P. N.: Phys. Rev. 145, 637 (1966)

    Article  ADS  Google Scholar 

  11. Keating, P. N.: Phys. Rev. 149, 674 (1966)

    Article  ADS  Google Scholar 

  12. Caǧin, T., Ray, J. R.: Phys. Rev. B 38, 7940 (1988)

    Article  ADS  Google Scholar 

  13. Caǧin, T., Pettitt, B.M.: Phys. Rev. B 39, 12484 (1989)

    Article  ADS  Google Scholar 

  14. Nielsen, O.H., Martin, R.M.: Phys. Rev. B 32, 3792 (1985)

    Article  ADS  Google Scholar 

  15. Nielsen, O.H.: Phys. Rev. B 34, 5808 (1986)

    Article  ADS  Google Scholar 

  16. Nielsen, O.H., Martin, R.M.: Phys. Rev. B 32, 3780 (1985)

    Article  ADS  Google Scholar 

  17. Łopuszyński, M., Majewski, J.A.: Phys. Rev. B 76, 045202 (2007)

    Google Scholar 

  18. Zhao, J.J., Winey, J.M., Gupta, Y.M.: Phys. Rev. B 75, 094105 (2007)

    Article  ADS  Google Scholar 

  19. Wang, H., Li, M.: Phys. Rev. B 79, 224102 (2009)

    Article  ADS  Google Scholar 

  20. Wang, R., Wang, S.F., Wu, X.Z.: Intermetallics 18, 1653 (2010)

    Article  Google Scholar 

  21. Wang, R., Wang, S.F., Wu, X.Z., Yao, Y., Liu, A.P.: Intermetallics 18, 2472 (2010)

    Article  Google Scholar 

  22. He, T., Huang, Q., Ramirez, A.P., et al.: Nature 411, 54 (2001)

    Article  ADS  Google Scholar 

  23. Uehara, M., Yamazaki, T., Kôri, T., et al.: J. Phys. Soc. Jpn. 76, 034714 (2007)

    Article  ADS  Google Scholar 

  24. Tohei, T., Wada, H., Kanomata, T.: J. Appl. Phys. 94, 1800 (2003)

    Article  ADS  Google Scholar 

  25. Yu, M.H., Lewis, L.H., Moodenbaugh, A.R.: J. Appl. Phys. 93, 10128 (2003)

    Article  ADS  Google Scholar 

  26. Kamishima, K., Goto, T., Nakagawa, H., et al.: Phys. Rev. B 63, 024426 (2000)

    Article  ADS  Google Scholar 

  27. Li, Y.B., Li, W.F., Feng, W.J., et al.: Phys. Rev. B 72, 024411 (2005)

    Article  ADS  Google Scholar 

  28. Takenaka, K., Takagi, H.: Appl. Phys. Lett. 87, 261902 (2005)

    Article  ADS  Google Scholar 

  29. Takenaka, K., Asano, K., Misawa, M., et al.: Appl. Phys. Lett. 92, 011927 (2008)

    Article  ADS  Google Scholar 

  30. Asano, K., Koyama, K., Takenaka, K.: Appl. Phys. Lett. 92, 161909 (2008)

    Article  ADS  Google Scholar 

  31. Park, M.S., Giim, J.S., Park, S.H., et al.: Supercond Sci. Technol. 17, 274 (2004)

    Article  ADS  Google Scholar 

  32. Uehara, M., Amano, T., Takano, S., et al.: Physica C 440, 6 (2006)

    Article  ADS  Google Scholar 

  33. Feng, H.F., Wu, X.Z., Gan, L.Y., et al.: J. Supercond Nov. Magn. (2013). doi: 10.1007/s10948-013-2441-8

  34. Shein, I.R., Shein, K.I., Ivanovskii, A.L.: Metallofizika Nov. Tekhnol. 26, 1193 (2004)

    Google Scholar 

  35. Uehara, M., Uehara, A., Kozawa, K., et al.: J. Phys. Soc. Jpn. 78, 033702 (2009)

    Article  ADS  Google Scholar 

  36. Karki, A.B., Xiong, Y.M., Young, D.P., et al.: Phys. Rev. B 79, 212508 (2009)

    Article  ADS  Google Scholar 

  37. Uehara, M., Uehara, A., Kozawa, K., Yamazaki, T., Kimishima, Y.: Physica C 470, S688 (2010)

    Article  ADS  Google Scholar 

  38. Li, C., Chen, W.G., Wang, F., Li, S.F., Sun, Q., Wang, S., Jia, Y.: J. Appl. Phys. 105, 123921 (2009)

    Article  ADS  Google Scholar 

  39. Shein, I.R., Bannikov, V.V., Ivanovskii, A.L.: Phys. Status. Solidi B 247, 72 (2010)

    Article  ADS  Google Scholar 

  40. Okoye, C.M.I.: Physica B 405, 1562 (2010)

    Article  ADS  Google Scholar 

  41. Hou, Z.F.: arXiv: 1002.1124v1

  42. Bannikov, V.V., Shein, I.R., Ivanovskii, A.L.: Comput. Mater. Sci. 49, 457 (2010)

    Article  Google Scholar 

  43. Thurston, R., Brugger, K.: Phys. Rev. 133, A1604 (1964)

    Article  ADS  Google Scholar 

  44. Wallace, D.C.: Thermoelastic theory of stressed crystals and higher-order elastic constants. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, vol. 25, p. 301. Academic, New York (1970)

  45. Thurston, R.N.: In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics Principles and Methods, vol. 1A, p. 1. Academic, New York (1964)

  46. Kresse, G., Hafner, J.: Phys. Rev. B 48, 3115 (1993)

    Article  Google Scholar 

  47. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  48. Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  49. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  50. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 78, 1396 (1996)

    Article  ADS  Google Scholar 

  51. Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  52. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  53. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  54. Bannikov, V.V., Shein, I.R., Ivanovskii, A.L.: Physica B 405, 4615 (2010)

    Article  ADS  Google Scholar 

  55. Alexandrov, K.S., Beznosikov, B.V.: Perovskites, Present and Future Novosibirsk, pp. 200–201 [in Russian] (2004)

  56. Holzwarth, N.A.W., Mattews, G.E., Dunning, R.B., Tackett, A.R., Zeng, Y.: Phys. Rev. B 55, 2005 (1997)

    Article  ADS  Google Scholar 

  57. Łepkowski, S.P., Majewski, J.A., Jurczak, G.: Phys. Rev. B 72, 245201 (2005)

    Article  ADS  Google Scholar 

  58. Mayer, A., Wehner, R.: Phys. Status Solidi B 126, 91 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of China (11104361), State Key Laboratory of Coal Mine Disaster Dynamics and Control in Chongqing University (2011DA105287FW201210) and the Fundamental Research Funds for the Central Universities (CDJZR14328801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wu, X., Wang, R. et al. Nonlinear Elastic Properties of Superconducting Antiperovskites MNNi3 (M =Zn, Cd, Mg, Al, Ga, and In) from First Principles. J Supercond Nov Magn 27, 1851–1859 (2014). https://doi.org/10.1007/s10948-014-2567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2567-3

Keywords

Navigation