Skip to main content
Log in

Magnetoelastic Anisotropy Induced Effects on Field and Temperature Dependent Magnetization Reversal of Ni Nanowires and Nanotubes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Vertically aligned Ni nanowires and nanotubes have been electrodeposited in alumina templates at room temperature. The detailed study of angular dependent coercivity and squareness demonstrates that the magnetic easy axis of Ni nanowires is perpendicular to that of Ni nanotubes axis. The mechanisms of magnetization reversal in Ni nanowires and Ni nanotubes are found to occur through the nucleation mode with the propagation of transverse domain wall and curling mode, respectively. Field dependant magnetization results at different temperatures have depicted that the magnetocrystalline anisotropy might cause a crossover of easy axis at room temperature to that of low temperature in both Ni nanowires and nanotubes. Furthermore, the variation in temperature dependent coercivity illustrates that the magnetoelastic anisotropy induced by the alumina matrix plays a dominant role in the magnetization reversal of the nanowires and nanotubes at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. Parkin, S.S., Hayashi, M., Thomas, L.: Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  3. Kuanr, B.K., Veerakumar, V., Marson, R., Mishra, S.R., Camley, R.E., Celinski, Z.: Appl. Phys. Lett. 94, 202505 (2009)

    Article  ADS  Google Scholar 

  4. Eisenstein, M.: Nat. Method 2, 484 (2005)

    Article  Google Scholar 

  5. Sharif, R., Shamaila, S., Ma, M., Yao, L.D., Yu, R.C., Han, X.F., Khaleeq-ur-Rahman, M.: Appl. Phys. Lett. 92, 032505 (2008)

    Article  ADS  Google Scholar 

  6. Nath, M., Rao, C.N.R.: Angew. Chem. Int. Ed. 41, 3451 (2002)

    Article  Google Scholar 

  7. Li, Y., Wang, J., Deng, Z., Wu, Y., Sun, X., Yu, D., Yang, P.: J. Am. Chem. Soc. 123, 9904 (2001)

    Article  Google Scholar 

  8. Sehayek, T., Lahav, M., Popovitz-Biro, R., Vaskevich, A., Rubinstei, I.: Chem. Mat. 17, 3743 (2005)

    Article  Google Scholar 

  9. Landeros, P., Allende, S., Escrig, J., Salcedo, E., Altbir, D.: Appl. Phys. Lett. 90, 102501 (2007)

    Article  ADS  Google Scholar 

  10. Stoner, E.C., Wohlfarth, E.P.: Philos. Trans. R. Soc. 240, 599 (1948)

    Article  MATH  ADS  Google Scholar 

  11. Feri, E.H., Shtrikman, S., Teves, D.: Phys. Rev. 106, 446 (1957)

    Article  ADS  Google Scholar 

  12. Ferre, R., Ounadjela, K., George, J.M., Piraux, L., Dubois, S.: Phys. Rev. B 56, 14066 (1997)

    Article  ADS  Google Scholar 

  13. Wuxia, L., Jones, G.A., Peng, Y., Shen, T.H.: J. Appl. Phys. 97, 104306 (2005)

    Article  ADS  Google Scholar 

  14. Han, G.C., Zon, B.Y., Luo, P.: J. Appl. Phys. 93, 9202 (2003)

    Article  ADS  Google Scholar 

  15. Wuxia, L., Peng, Y., Zhang, J., Jones, G.A., Shen, T.H.: J. Phys.: Conf. Ser. 17, 20 (2005)

    Article  ADS  Google Scholar 

  16. Ciureanu, M., Beron, F., Clime, L., Ciureanu, P., Yelon, A., Ovari, T.A., Cochrane, R.W.: Electrochim. Acta 50, 4487 (2005)

    Article  Google Scholar 

  17. Escrig, J., Bachmann, J., Jing, J., Daub, M., Altbir, D., Nielsch, K.: Phys. Rev. B 77, 214421 (2008)

    Article  ADS  Google Scholar 

  18. Lavín, R., Denardin, J.C., Escrig, J., Altbir, D., Cortés, A., Gómez, H.: J. Appl. Phys. 10, 103903 (2009)

    Article  ADS  Google Scholar 

  19. Aharoni, A.: Introduction to the Theory of Ferromagnetism. Oxford University Press, Oxford (2000)

    Google Scholar 

  20. Paulus, P.M., Luis, F., Kroll, M., Schmid, G., de Jongh, L.J.: J. Magn. Magn. Mater. 224, 180 (2001)

    Article  ADS  Google Scholar 

  21. Vázquez, M., Pirota, K., Hernández-Vélez, M., Prida, V.M., Navas, D., Sanz, R., Batallán, F., Velázquez, J.: J. Appl. Phys. 95, 6642 (2004)

    Article  ADS  Google Scholar 

  22. Dubois, S., Colin, J., Duvail, J.L., Piraus, L.: Phys. Rev. B 61, 14315 (2000)

    Article  ADS  Google Scholar 

  23. Jorritsma, J., Mydosh, J.A.: J. Appl. Phys. 84, 9011 (1998)

    Article  Google Scholar 

  24. Huysmans, G.T.A., Lodder, J.C., Wakui, J.: J. Appl. Phys. 64, 1988 (2016)

    Google Scholar 

  25. Zeng, H., Michalski, S., Kirby, R.D., Sellmyer, D.J., Menon, L., Bandyopadhyay, S.: J. Phys.: Condens. Matter 14, 715 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, N., Chen, J.Y., Zhou, W.P. et al. Magnetoelastic Anisotropy Induced Effects on Field and Temperature Dependent Magnetization Reversal of Ni Nanowires and Nanotubes. J Supercond Nov Magn 24, 785–792 (2011). https://doi.org/10.1007/s10948-010-1016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-010-1016-1

Keywords

Navigation