Skip to main content
Log in

Mathematical Model for Transitional Processes in Josephson Cryotrons Based on Tunnel Junctions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we consider controlling of logical states of Josephson memory cells (cryotrons) based on superconductor-insulator-superconductor (SIS) Josephson tunnel junctions by external current impulses. A mathematical model for the transitional processes that take place during direct logical transitions “0” → “1” and inverse logical transitions “1” → “0” is proposed. By means of mathematical modeling, we investigate transitional processes in cryotrons during the change of their logical state and obtain their transitional characteristics for operational temperatures T 1=11.6 K and T 2=81.2 K, close to the boiling temperatures of helium and nitrogen, respectively. It is shown that such memory cells can efficiently operate under the temperature T 2=81.2 K. The behavior of the Josephson cryotrons as well as their operational stability is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plantenberg, J.H., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447(7146), 836–839 (2007)

    Article  ADS  Google Scholar 

  2. Czechowska, M., Kurpas, M., Czajka, K., Zipper, E.: Similarities and differences of persistent currents in superconducting rings and normal mesoscopic cylinders. Supercond. Sci. Technol. 20, 44–50 (2007)

    Article  ADS  Google Scholar 

  3. Zheng, X.-H., Shi, B., Cao, Z.-L.: The generation of a regular dodecahedron graph state with a superconducting qubit network. Supercond. Sci. Technol. 20, 990–993 (2007)

    Article  ADS  Google Scholar 

  4. Kim, J.H., Dhungana, R.P., Park, K.-S.: Decoherence in Josephson vortex quantum bits: Long-Josephson-junction approach to a two-state system. Phys. Rev. B 73, 214506 (2006)

    Article  ADS  Google Scholar 

  5. Jones, J.A.: NMR quantum computation: a critical evaluation. Fortschr. Phys. 48(9–11), 909–924 (2000)

    Article  Google Scholar 

  6. Palma, G.M., Suominen, K.-A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc., Lond. A 452, 567 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Ariyoshi, S., Otani, C., Dobroiu, A., Sato, H., Kawase, K., Shimizu, H.M., Taino, T., Matsuo, H.: Terahertz imaging with a direct detector based on superconducting tunnel junctions. Appl. Phys. Lett. 88, 203503 (2006)

    Article  ADS  Google Scholar 

  8. Larionov, A.A., Fedichkin, L.E., Kokin, A.A., Valiev, K.A.: The nuclear magnetic resonance spectrum of 31P donors in a silicon quantum computer. Nanotechnology 11(4), 392–396 (2000)

    Article  ADS  Google Scholar 

  9. Liu, Y.-x., Wei, L.F., Tsai, J.S., Nori, F.: Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006)

    Article  ADS  Google Scholar 

  10. Palomaki, T.A., Dutta, S.K., Paik, H., Xu, H., Matthews, J., Lewis, R.M., Ramos, R.C., Mitra, K., Johnson, P.R., Strauch, F.W., Dragt, A.J., Lobb, C.J., Anderson, J.R., Wellstood, F.C.: Initializing the flux state of multiwell inductively isolated Josephson junction qubits. Phys. Rev. B 73, 014520 (2006)

    Article  ADS  Google Scholar 

  11. Dahm, A.J.: Fizika nizkih temperatur Quantum computing with bits made of electrons on a helium surface. 29(6), 648–652 (in Ukraine)

  12. Tyhanskyi, M.V., Partyka, A.I.: Optymizacija rezhymu roboty dzhozefsonivs’kyh kriotroniv. Visnyk NU “LP” “Elektronika” (592), 143–148 (2007) (in Ukraine)

  13. Tyhanskyi, M.V., Krysko, R.R., Partyka, A.I.: Osoblyvosti keruvannja logichnym stanom kriotroniv impul’samy magnitnogo potoku. Visnyk NU “LP” “Elektronika” (619), 139–149 (2008) (in Ukraine)

  14. Tyhanskyj, M.V., Partyka, A.I.: Determination of stability intervals for Josephson cryotrons. Electron. Commun. 2(4–5), 11–16 (2009) (in Ukraine)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Partyka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partyka, A., Tyhanskyj, M. Mathematical Model for Transitional Processes in Josephson Cryotrons Based on Tunnel Junctions. J Supercond Nov Magn 24, 1513–1519 (2011). https://doi.org/10.1007/s10948-010-0925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-010-0925-3

Keywords

Navigation