Skip to main content
Log in

Coupled Solitons for Quantum Communication and Metrology in the Presence of Particle Dissipation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Bright solitons represent natural information carriers for optical communication. However, particle losses create serious barriers to soliton implementation in quantum technologies for quantum communication and quantum metrology purposes. In this work, we consider a quantum coupled soliton problem in the presence of soliton particle dissipation and examine two suitable configurations for soliton coupling. The soliton Josephson junction (SJJ) and nonlinear soliton Josephson junction (NSJJ) models presume 1D soliton coupling in the transverse and longitudinal dimensions, respectively. We elucidate phase portraits both in the absence and presence of losses. For the latter case, we show that dynamical switching between macroscopic self-trapping and Rabi-like oscillation regimes occurs. For quantization of coupled-soliton parameters, we exploit the phase difference and particle-number-imbalance conjugated variables. In the presence of weak particle losses, we determine the characteristic frequencies of small-amplitude Rabi-like oscillations for these variables. In the adiabatic limit, we establish quantum properties of the soliton-population imbalance and phase difference. Relevant uncertainty relation is studied for the examined soliton junction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kimble, Nature, 453, 1023 (2008).

    Article  ADS  Google Scholar 

  2. G. P. Agrawal, “Nonlinear fiber optics,” in: Optics and Photonics, Elsevier (2006).

  3. J. Nguyen, P. Dyke, D. Luo, et al., Nature Phys., 10, 918 (2014); https://doi.org/10.1038/nphys3135

    Article  ADS  Google Scholar 

  4. P. M. Walker, L. Tinkler, D. V. Skryabin, et al., Nature Commun., 6, 8317 (2015).

    Article  ADS  Google Scholar 

  5. E. Feigenbaum and M. Orenstein, Opt. Lett., 32, 674 (2007).

    Article  ADS  Google Scholar 

  6. Y. Lai and H. A. Haus, Phys. Rev. A, 40, 844 (1989).

    Article  ADS  Google Scholar 

  7. Y. Lai and H. A. Haus, Phys. Rev. A, 40, 854 (1989).

    Article  ADS  Google Scholar 

  8. P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B, 4, 1565 (1987).

    Article  ADS  Google Scholar 

  9. S. Carter, P. Drummond, M. Reid, and R. Shelby, Phys. Rev. Lett., 58, 1841 (1987).

    Article  ADS  Google Scholar 

  10. M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett., 6, 153 (1991).

    Article  ADS  Google Scholar 

  11. S. R. Friberg, S. Machida, M. J. Werner, et al., Phys. Rev. Lett., 77, 3775 (1996).

    Article  ADS  Google Scholar 

  12. K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature, 417, 150 (2002).

    Article  ADS  Google Scholar 

  13. L. Khaykovich, F. Schreck, G. Ferrari, et al., Science, 296, 1290 (2002).

    Article  ADS  Google Scholar 

  14. J. H. V. Nguyen, P. Dyke, D. Lu, et al., Nature Phys., 10, 918 (2014).

    Article  ADS  Google Scholar 

  15. C. Weiss, S. L. Cornish, S. A. Gardiner, and H. P. Breuer, Phys. Rev. A, 93, 013605 (2016).

    Article  ADS  Google Scholar 

  16. D. V. Tsarev, S. M. Arakelian, Y. L. Chuang, et al., Opt. Express, 26, 19583 (2018).

    Article  ADS  Google Scholar 

  17. D. V. Tsarev, T. V. Ngo, R. K. Lee, and A. P. Alodjants, New J. Phys., 21, 083041 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  18. D. V. Tsarev, A. P. Alodjants, T. V. Ngo, and R. K. Lee, New J. Phys., 22, 113016 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  19. H. R. Lewis Jr. and W. B. Riesenfeld, J. Math. Phys., 10, 1458 (1969).

    Article  ADS  Google Scholar 

  20. I. A. Malkin, V. I. Man’ko, and D. A. Trifonov, Phys. Rev. D, 2, 1371 (1970).

    Article  ADS  Google Scholar 

  21. C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge Univ. Press (2008).

    Book  Google Scholar 

  22. B. Eiermann, T. Anker, M. Albiez, et al., Phys. Rev. Lett., 92, 230401 (2004).

    Article  ADS  Google Scholar 

  23. M. A. M. Marte and S. Stenholm, Phys. Rev. A, 56, 2940 (1997).

    Article  ADS  Google Scholar 

  24. S. Raghavan and G. P. Agrawal, J. Mod. Opt., 47, 1155 (2000).

    Article  ADS  Google Scholar 

  25. E. A. Ostrovskaya, Y. S. Kivshar, M. Lisak, et al., Phys. Rev. A, 61, 031601(R) (2000).

  26. T. V. Ngo, D. V. Tsarev, R. K. Lee, and A. P. Alodjants, “Bose–Einstein condensate soliton qubit states for metrological applications,” arXiv:2011.13190 (2020).

  27. J. I. Cirac, M. Lewenstein, K. Molmer, and P. Zoller, Phys. Rev. A, 57, 1208 (1998).

    Article  ADS  Google Scholar 

  28. R. Gati and M. K. Oberthaler, J. Phys. B: At. Mol. Opt. Phys., 40, R61 (2007).

    Article  ADS  Google Scholar 

  29. Q. Y. He, P. D. Drummond, M. K. Olsen, and M. D. Reid, Phys. Rev. A, 86, 023626 (2012).

    Article  ADS  Google Scholar 

  30. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys. Rev. Lett., 79, 4950 (1997).

    Article  ADS  Google Scholar 

  31. J. Brand, T. J. Haigh, and U. Zülicke, Phys. Rev. A, 81, 025602 (2010).

  32. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, Springer Science and Business Media (2007).

  33. P. V. Elyutin and A. N. Rogovenko, Phys. Rev. E, 63, 026610 (2001).

    Article  ADS  Google Scholar 

  34. S. Kohler and F. Sols, Phys. Rev. Lett., 89, 060403 (2002).

    Article  ADS  Google Scholar 

  35. G. S. Paraoanu, S. Kohler, F. Sols, and A. J. Leggett, Phys. B: At. Mol. Opt. Phys., 34, 4689 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Alodjants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinh, N.T., Tsarev, D.V. & Alodjants, A.P. Coupled Solitons for Quantum Communication and Metrology in the Presence of Particle Dissipation. J Russ Laser Res 42, 523–537 (2021). https://doi.org/10.1007/s10946-021-09990-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09990-1

Keywords

Navigation