Skip to main content

Advertisement

Log in

Particle Size Distributions Based on a Multipopulation Genetic Algorithm Used in Multiwavelength Lidar

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Aerosols influence the radiation budget of the Earth’s atmospheric system. Aerosol particle size distribution is one of the major parameters used for characterizing aerosol influence on radiative forcing. The optical and microphysical properties of aerosol particles over Yinchuan, China, were measured with a multiwavelength lidar developed at Beifang University of Nationalities using backscatter and extinction coefficients at wavelengths of 1064, 532, and 355 nm. These data were used to retrieve particle size distributions. Given the disadvantages of the traditional regularization method, the innovative multipopulation genetic algorithm (MPGA) was used to retrieve the particle size distribution from the lidar data. To verify the feasibility of using the MPGA on multiwavelength lidar data, experiments were carried out under different atmospheric conditions, including a background sunny day, a cloudy day, and a foggy day. The particle size distributions obtained from the multiwavelength lidar data were compared with results retrieved from direct irradiance data from a sun photometer. Results showed that the MPGA is suitable for retrieving particle size distributions from multiwavelength lidar data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shimizu, N. Sugimoto, I. Matsui, and T. Nishizawa, J. Quant. Spectrosc. Radiat. Transfer, 153, 77 (2015).

    Article  ADS  Google Scholar 

  2. S. N. Volkov, I. V. Samokhvalov, D. C. Hai, and D. Kim, App. Opt., 54, 3095 (2015).

    Article  ADS  Google Scholar 

  3. W. Gong, W. Wang, F. Mao, and J. Zhang, Opt. Commun., 349, 145 (2015).

    Article  ADS  Google Scholar 

  4. S. P. Burton, R. A. Ferrare, C. A. Hostetler, et al., Atmos. Meas. Tech., 5, 73 (2012).

    Article  Google Scholar 

  5. D. Müller, D. Althausen, U. Wandinger, and A. Ansmann, “Multiple-wavelength aerosol lidar” in: A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger (Eds.), Advances in Atmospheric Remote Sensing with Lidar, Springer Verlag, Berlin (1996).

    Google Scholar 

  6. D. Althausen, D. Mülle, A. Ansmann, et al., J. Atmos. Ocean. Technol., 17, 1469 (2000).

    Article  ADS  Google Scholar 

  7. D. Mülle, U. Wandinger, and A. Ansmann, Appl. Opt., 38, 2346 (1999).

    Article  ADS  Google Scholar 

  8. D. Mülle, U. Wandinger, and A. Ansmann, Appl. Opt., 38, 2358 (1999).

    Article  ADS  Google Scholar 

  9. D. Mülle, F. Wagner, U. Wandinger, et al., Appl. Opt., 39, 1879 (2000).

    Article  ADS  Google Scholar 

  10. C. S. Hong, K. H. Lee, Y. J. Kim, and Y. Iwasaka, Environ. Monit. Assess., 92, 43 (2004).

    Article  Google Scholar 

  11. H. Parsiani and J. Mendez, WSEAS Trans. Syst., 7, 1218 (2008).

    Google Scholar 

  12. R. E. Mamouri, A. Papayannis, V. Amiridis, et al., Atmos. Meas. Tech., 5, 1793 (2012).

    Article  Google Scholar 

  13. J. Song and H. Zhang, Acta Meteorol. Sinica, 4, 483 (1982).

    Google Scholar 

  14. Z. Tao, Y. Zhang, G. Zhang, et al., Chin. J. Quantum Electron., 21, 103 (2004).

    Google Scholar 

  15. Z. Tao, D. Liu, H. Wei, et al., Spectrosc. Spect. Anal., 33, 1739 (2013).

    Google Scholar 

  16. D. Liu, Z. Tao, D. Wu, et al., Acta Optica Sinica, 33, 0228001-1 (2013).

    Article  Google Scholar 

  17. D. Liu, Z. Tao, Hu ShunXing, et al.. Acta Optica Sinica, 34, 0401001-1 (2014).

    Article  Google Scholar 

  18. W. Wilson and H. Suh, J. Air Waste Manag. Assoc., 47, 1238 (1997).

    Article  Google Scholar 

  19. R. Pozzia, B. De Berardis, L. Paoletti, and C. Guastadisegni, Toxicology, 183, 243 (2003).

    Article  Google Scholar 

  20. T. Chen, Y. Zhao, D. Liu, et al., Chin. J. Lasers, 39, 0514001 (2012).

    Article  Google Scholar 

  21. H. Di, X. Hou, H. Zhao, et al., Acta Physica Sinica, 63, 244206 (2014).

    Google Scholar 

  22. L. Dai, H. Ding, and D. Sun, Semicond. Optoelectron., 29, 980 (2008).

    Google Scholar 

  23. S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithm, Springer Verlag (2007), p. 325.

  24. N. S. Mera, L. Elliott, and D. B. Ingham, Comput. Mech., 33, 254 (2004).

    Article  MathSciNet  Google Scholar 

  25. J. Mao and Juan Li, Terr. Atmos. Ocean. Sci., 25, 791 (2014).

    Article  Google Scholar 

  26. J. Mao, H. Sheng, H. Zhao, and C. Zhou, Adv. Meteorol., 2014, 157645 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Zhao, H., Sheng, H. et al. Particle Size Distributions Based on a Multipopulation Genetic Algorithm Used in Multiwavelength Lidar. J Russ Laser Res 37, 69–81 (2016). https://doi.org/10.1007/s10946-016-9546-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9546-z

Keywords

Navigation