Skip to main content
Log in

Narrow-Band-Width Infrared Radiation from a Noncritically Phase-Matched ZnGeP2 Optical Parametric Oscillator

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate a narrow-band-width tunable infrared radiation in the spectral range 4–7 μm with gratings having different groove densities. We achieve a band width as low as 22 nm employing a diffraction grating having a groove density of 500 lines/mm at 5.6 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Vodopyanov, Appl. Phys. B, 89, 141 (2003).

    Google Scholar 

  2. J. G. Haub, M. J. Johnson, B. J. Orr, and R. Wallenstein, Appl. Phys. Lett., 58, 1718 (1991).

    Article  ADS  Google Scholar 

  3. Y. X. Fan, R. C. Eckardt, and R. L. Byer, Appl. Phys. Lett., 53, 2014 (1988).

    Article  ADS  Google Scholar 

  4. N. P. Barnes, G. H. Watson, and K. E. Murrey, in: L. L. Lloyd and A. A. Pinto (Eds.), OSA Proceedings on Advanced Solid-State Lasers (1992), Vol. 13, p. 356.

  5. A. Fix, T. Schröder, R. Wallenstein, et al., J. Opt. Soc. Am. B, 10, 1744 (1993).

    Article  ADS  Google Scholar 

  6. M. J. T. Milton, G. D. Gardiner, G. Chourdakis, and P. T. Woods, Opt. Lett., 19, 281 (1994).

    Article  ADS  Google Scholar 

  7. W. R. Brosenberg, W. S. Pelouch, and C. L. Tang, Appl. Phys. Lett., 55, 1952 (1989).

    Article  ADS  Google Scholar 

  8. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, J. Opt. Soc. Am. B, 12, 2122 (1995).

    Article  ADS  Google Scholar 

  9. L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, et al., J. Opt. Soc. Am. B, 12, 2117 (1995).

    Article  ADS  Google Scholar 

  10. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron., QE-15, 415 (1979).

    Article  ADS  Google Scholar 

  11. F. Ganikhanov, T. Caughy, and K. L. Vodopyanov, J. Opt. Soc. Am. B, 18, 818 (2001).

    Article  ADS  Google Scholar 

  12. K. L. Vodopyanov, J. F. Maffetone, I. Zwieback, and W. Ruderman, Appl. Phys. Lett., 75, 1204 (1999).

    Article  ADS  Google Scholar 

  13. W. R. Bosenberg and C. L. Tang, Appl. Phys. Lett., 56, 1819 (1990).

    Article  ADS  Google Scholar 

  14. B. Scherrer, I. Ribet, A. Godard, et al., J. Opt. Soc. Am. B, 17, 1716 (2000).

    Article  ADS  Google Scholar 

  15. K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, Opt. Express, 22, 4131 (2014).

    Article  ADS  Google Scholar 

  16. J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett., 14, 973 (1965).

    Article  ADS  Google Scholar 

  17. J. D. Beasley, Appl. Opt., 33, 1000 (1994).

    Article  ADS  Google Scholar 

  18. G. D. Boyd, E. Beuhler, and F. G. Stortz, Appl. Phys. Lett., 18, 301 (1971).

    Article  ADS  Google Scholar 

  19. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, Opt. Lett., 23, 1262 (1998).

    Article  ADS  Google Scholar 

  20. P. B. Phua, B. S. Lai, R. F. Wu, et al., Opt. Lett., 31, 489 (2006).

    Article  ADS  Google Scholar 

  21. X. L. Dong, B. T. Zhang, J. L. Liang, et al., Opt. Commun., 282, 1668 (2009).

    Article  ADS  Google Scholar 

  22. M. Henniksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett., 31, 1878 (2006).

    Article  ADS  Google Scholar 

  23. T. H. Allik, S. Chandra, D. M. Rines, et al., Opt. Lett., 22, 597 (1997).

    Article  ADS  Google Scholar 

  24. P. A. Budni, L. A. Pomeranz, M. L. Lemons, et al., J. Opt. Soc. Am. B, 17, 723 (2000).

    Article  ADS  Google Scholar 

  25. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, et al., Opt. Lett., 25, 841 (2000).

    Article  ADS  Google Scholar 

  26. S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun., 241, 173 (2004).

    Article  ADS  Google Scholar 

  27. M. Gebhardt, C. Gaida, P. Kadwani, et al., Opt. Lett., 39, 1212 (2014).

    Article  ADS  Google Scholar 

  28. Y. Peng, X. Wei, and W. Wang, Chin. Opt. Lett., 9, 061403 (2011).

    Article  Google Scholar 

  29. G. Stoeppler, N. Thilmann, V. Pasiskevicius, et al., Opt. Express, 20, 4509 (2012).

    Article  ADS  Google Scholar 

  30. Y. B. Quan, Z. G. Li, J. Y. Lun, and W. Y. Zhu, Chin. Phys. Lett., 26, 24209 (2009).

    Article  Google Scholar 

  31. Z. G. Li, J. Y. Lun, W. T. Heng, and W. Y. Zhu, Chin. Phys. Lett., 26, 34208 (2009).

    Article  ADS  Google Scholar 

  32. L. Gang, Y. B. Quan, D. X. Ming, et al., Chin. Phys. Lett., 27, 01407 (2010).

    Google Scholar 

  33. A. F. Nieuwenhuis, C. J. Lee, P. J. M. van der Slot, et al., Opt. Lett., 33, 52 (2008).

    Article  ADS  Google Scholar 

  34. D. Creeden, P. A. Ketteridge, P. A. Budni, et al., Opt. Lett., 33, 315 (2008).

    Article  ADS  Google Scholar 

  35. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B, 88, 37 (2007).

    Article  ADS  Google Scholar 

  36. J. B. Dherbecourt, A. Godard, M. Raybaut, et al., Opt. Lett., 23, 2197 (2010).

    Article  ADS  Google Scholar 

  37. Y. J. Shen, B. Q. Yao, Z. Cui, et al., Appl. Phys. B, 117, 127 (2014).

    Article  ADS  Google Scholar 

  38. K. L. Vodopyanov and P. G. Schunemann, Opt. Lett., 28, 441 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Additional information

Manuscript submitted by the authors in English on May 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Bahuguna, K.C. & Kumar, V. Narrow-Band-Width Infrared Radiation from a Noncritically Phase-Matched ZnGeP2 Optical Parametric Oscillator. J Russ Laser Res 36, 477–484 (2015). https://doi.org/10.1007/s10946-015-9526-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9526-8

Keywords

Navigation