Skip to main content
Log in

Acceleration Modes in Fermi Accelerator

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We explain Fermi acceleration of particles bouncing in a gravitational field and experiencing a force due to a modulated evanescent laser field. The acceleration strongly depends upon the initial conditions in the phase space and certain modulation amplitude. We study the accelerated modes by the Poincaré surface of sections and Lyapunov exponents. Furthermore, we identify the initial areas of the phase space that support accelerated dynamics and write a mapping for accelerated dynamics. We show that a distinction between accelerated and chaotic evolutions can be made with the help of the aspect ratio. The Lyapunov exponent shows that the accelerated mode supports ordered evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, Phys. Rev., 75, 1169 (1949).

    Article  ADS  MATH  Google Scholar 

  2. M. Lieberman and A. J. Lichtenberg, Phys. Rev. A, 5, 1852 (1972).

    Article  ADS  Google Scholar 

  3. A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer, New York (1992).

    Book  MATH  Google Scholar 

  4. E. D. Leonel, J. K. L. da Silva, and S. O. Kamphorst, Physica A, 331, 435 (2004).

    Article  ADS  Google Scholar 

  5. E. D. Leonel, P. V. E. McClintock, and J. K. L. da Silva, Phys. Rev. Lett., 93, 014101 (2004).

    Article  ADS  Google Scholar 

  6. E. D. Leonel and P. V. E. McClintock, J. Phys. A: Math. Gen., 38, 425 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  7. R. E. de Carvalho, F. C. Souza, and E. D. Leonel, Phys. Rev. E, 73, 066229 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. K. Karlis, P. K. Papachristou, F. K. Diakonos, et al., Phys. Rev. Lett., 97, 194102 (2006).

    Article  ADS  Google Scholar 

  9. A. K. Karlis, P. K. Papachristou, F. K. Diakonos, et al., Phys. Rev. E, 76, 016214 (2007).

    Article  ADS  Google Scholar 

  10. A. Steane, P. Szriftgiser, P. Desbiolles, and J. Dalibard, Phys. Rev. Lett., 74, 4972 (1995).

    Article  ADS  Google Scholar 

  11. F. Saif, I. Bialynicki-Birula, M. Fortunato, and W. P. Schleich, Phys. Rev. A, 58, 4779 (1998).

    Article  ADS  Google Scholar 

  12. F. Saif, Phys. Rev. E, 62, 6308 (2000).

    Article  ADS  Google Scholar 

  13. F. Saif, Phys. Lett. A, 274, 98 (2000).

    Article  ADS  MATH  Google Scholar 

  14. F. Saif, G. Alber, V. Savichev, and W. P. Schleich, J. Optics B, 2, 668 (2000).

    Article  ADS  Google Scholar 

  15. F. Saif, Phys. Rep., 419, 207 (2005).

    Article  ADS  Google Scholar 

  16. F. Saif and I. Rehman, Phys. Rev. A, 75, 043610 (2007).

    Article  ADS  Google Scholar 

  17. A. V. Milovanov and L. M. Zeleny, Phys. Rev. E, 64, 052101 (2001).

    Article  ADS  Google Scholar 

  18. A. Veltri and V. Carbone, Phys. Rev. Lett., 92, 143901 (2004).

    Article  ADS  Google Scholar 

  19. K. Kobayakawa, Y. S. Honda, and T. Tamura, Phys. Rev. D, 66, 083004 (2002).

    Article  ADS  Google Scholar 

  20. M. A. Malkov, Phys. Rev. E, 58, 4911 (1998).

    Article  ADS  Google Scholar 

  21. S. Ulam, in: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics, and Probability (Berkeley, CA), California University Press (1961), Vol. 3, p. 315.

  22. L. D. Pustylnikov, Trans. Moscow Math. Soc., 2 (1978)

  23. L. D. Pustylnikov, Theor. Math. Phys., 57, 1035 (1983).

    Article  MathSciNet  Google Scholar 

  24. L. D. Pustylnikov, Sov. Math. Dokl., 35, 88 (1987).

    Google Scholar 

  25. L. D. Pustylnikov, Russ. Acad. Sci. Sb. Math., 82, 231 (1995).

    Article  MathSciNet  Google Scholar 

  26. B. V. Chirikov, Phys. Rep., 52, 263 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  27. G. M. Zaslavsky and U. Frish (Eds.), Levy Flights and Related Topics in Physics, Springer-Verlag (1995).

  28. C. G. Aminoff, A. M. Steane, P. Bouyer, et al., Phys. Rev. Lett., 71, 3083 (1993).

    Article  ADS  Google Scholar 

  29. A. Steane, P. Szriftgiser, P. Desbiolles, et al., Phys. Rev. Lett., 74, 4972 (1995).

    Article  ADS  Google Scholar 

  30. Javed Akram, Khalid Naseer, Inam-ur Rehman, and Farhan Saif, Math. Probl. Eng., 2009, 246438 (2009).

    Article  Google Scholar 

  31. J. Greene, J. Math. Phys., 20, 1183 (1979).

    Article  ADS  Google Scholar 

  32. Edson D. Leonel, Juliano A. de Oliveira, Farhan Saif, J. Phys. A: Math. Gen., 44, 302001 (2011).

    Article  Google Scholar 

  33. Farhan Saif and Pierre Meystre, Int. J. Mod. Phys. D, 16, 2593 (2007).

    Article  ADS  Google Scholar 

  34. Itzhack Dana and Shmuel Fishman, Physica D, 17, 63 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Saif.

Additional information

Manuscript submitted by the authors in English on August 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saif, F., Rehman, I.U. Acceleration Modes in Fermi Accelerator. J Russ Laser Res 34, 515–522 (2013). https://doi.org/10.1007/s10946-013-9383-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-013-9383-2

Keywords

Navigation