Skip to main content
Log in

Absorption and Scattering of Light by Hybrid Metal/J-Aggregate Nanoparticles: Plasmon–Exciton Coupling and Size Effects

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We report the results of our theoretical studies of the optical properties of hybrid nanoparticles consisting of the metal core covered with molecular J-aggregates. We evaluate the cross sections of absorption and scattering of light by such particles on the basis of the extended Mie theory for two concentric spheres with material dielectric functions that take into account the size effect associated with scattering of free electrons from the core/shell interface. We carry out our calculations in a wide range of light wavelengths and geometrical parameters of the composite system for silver and gold core and for a J-aggregate shell composed of different cyanine dyes. The results obtained demonstrate the quite different behavior of the extinction spectra of such particles caused by the different strengths of interaction between the Frenkel exciton and the dipolar or multipolar plasmons. We pay particular attention to the investigation of spectral peak positions associated with the eigenfrequencies of hybrid modes in the system and peak intensities as functions of reduced oscillator strength in the molecular J-band for various relationships between the core radius and shell thickness. This provides an efficient means for the explanation of the main features in the optical properties of metal/J-aggregate nanoparticles and can be used for an effective control of the plasmon–exciton coupling strength in such hybrid complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nature Photonics, 7, 13 (2013).

    Article  ADS  Google Scholar 

  2. L.-Y. Chang, R. R. Lunt, P. R. Brown, et al., Nano Lett., 13, 994 (2013).

    Article  ADS  Google Scholar 

  3. T. Yatsui, S. Sangu, T. Kawazoe, et al., Appl. Phys. Lett., 90, 223110 (2007).

    Article  ADS  Google Scholar 

  4. A. Agrawal, C. Susut, G. Stafford, et al., Nano Lett., 11, 2774 (2011).

    Article  Google Scholar 

  5. B. C. Das and A. J. Pal, Phil. Trans. R. Soc. A, 367, 4181 (2009).

    Article  ADS  Google Scholar 

  6. M. Ohtsu (Ed.), Nanophotonics and Nanofabrication, Wiley-VCH, Wenheim (2009).

    Google Scholar 

  7. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, New York (2010).

    Book  Google Scholar 

  8. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuiperes, Rev. Mod. Phys., 82, 729 (2010).

    Article  ADS  Google Scholar 

  9. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. B, 70, 035107 (2004).

    Article  ADS  Google Scholar 

  10. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. E, 78, 016607 (2008).

    Article  ADS  Google Scholar 

  11. M. A. Noginov, G. Zhu, A. M. Belgrave, et al., Nature, 460, 1110 (2009).

    Article  ADS  Google Scholar 

  12. I. E. Protsenko, Phys. Uspekhi, 55 1040 (2012) [Usp. Fiz. Nauk, 82, 1116 (2012)].

    Article  ADS  Google Scholar 

  13. M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).

    Article  Google Scholar 

  14. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005).

    Article  Google Scholar 

  15. F. J. Garcia de Abajo, Rev. Mod. Phys., 79, 1267 (2007).

    Article  ADS  Google Scholar 

  16. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and beyond, Wiley-VCH, Wenheim (2011).

    Book  Google Scholar 

  17. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).

    Article  ADS  Google Scholar 

  18. N. J. Halas, S. Lal, W.-S. Chang, et al., Chem. Rev., 111, 3913 (2011).

    Article  Google Scholar 

  19. T. Kobayashi (Ed.), J-Aggregates, World Scientific, Singapore (1996).

    Google Scholar 

  20. N. Kometani, M. Tsubonishi, T. Fujita, et al., Langmuir, 17, 578 (2001).

    Article  Google Scholar 

  21. T. Sato, F. Tsugawa, T. Tomita, and M. Kawasaki, Chem. Lett., 30, 402 (2001).

    Article  Google Scholar 

  22. J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, J. Am. Chem. Soc., 124, 4536 (2002).

    Article  Google Scholar 

  23. G.A. Wurtz, J. Hranisavljevic, and G. P. Wiederrecht, J. Microsc., 210, 340 (2003).

    Article  MathSciNet  Google Scholar 

  24. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, Nano Lett., 4, 2121 (2004).

    Article  ADS  Google Scholar 

  25. G. P.Wiederrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett., 461, 171 (2008).

    Article  ADS  Google Scholar 

  26. V. S. Lebedev, A. G. Vitukhnovsky, A. Yoshida, et al., Colloids Surfaces A: Physicochem. Eng. Aspects, 326, 204 (2008).

    Article  Google Scholar 

  27. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, et al., Quantum Electron., 40, 246 (2010) [Kvantovaya Élektron., 40, 246 (2010)].

    Article  ADS  Google Scholar 

  28. T. Uwada, R. Toyota, H. Masuhara, and T. Asahi, J. Phys. Chem. C, 111, 1549 (2007).

    Article  Google Scholar 

  29. D. D. Lekeufack, A. Brioude, A. W. Coleman, et al., Appl. Phys. Lett., 96, 253107 (2010).

    Article  ADS  Google Scholar 

  30. A. L. Aden and M. Kerker, J. Appl. Phys., 22, 1242 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A. Güttler, Ann. Phys. (Leipzig), 11, 65 (1952).

    Article  MATH  Google Scholar 

  32. G. Mie, Ann. Phys., 25, 377 (1908).

    Article  MATH  Google Scholar 

  33. R. Ruppin and R. Englman, J. Phys. Cond. Matt., 1, 630 (1968).

    ADS  Google Scholar 

  34. K. A. Fuller, Opt. Lett., 18, 257 (1993).

    Article  ADS  Google Scholar 

  35. R. Bhandari, Appl. Opt., 24, 1960 (1985).

    Article  ADS  Google Scholar 

  36. Z. C. Wu and Y. P. Wang, Radio Sci., 26, 1393 (1991).

    Article  ADS  Google Scholar 

  37. J. Sinzig and M. Quinten, Appl. Phys. A, 58, 157 (1994).

    Article  ADS  Google Scholar 

  38. A. Irimajiri, T. Hanai, and A. Inouye, J. Theor. Biol., 78, 251 (1979).

    Article  Google Scholar 

  39. E. Prodan, P. Nordlander, and N. J. Halas, Nano Lett., 3, 1411 (2003).

    Article  ADS  Google Scholar 

  40. N. G. Khlebtsov, Quantum Electron., 38, 504 (2008) [Kvantovaya Élektron., 38, 504 (2008)].

    Article  ADS  Google Scholar 

  41. A. Alù and N. Engheta, J. Opt. A: Pure Appl. Opt., 10, 093002 (2008).

    Article  ADS  Google Scholar 

  42. W. Qiu, B. G. DeLacy, S. G. Johnson, et al., Opt. Exp., 20, 18494 (2012).

    Article  ADS  Google Scholar 

  43. V. S. Lebedev and A. S. Medvedev, Quantum Electron., 42, 701 (2012) [Kvantovaya Élektron., 42, 701 (2012)].

    Article  ADS  Google Scholar 

  44. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York (1998).

    Book  Google Scholar 

  45. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin (1995).

    Book  Google Scholar 

  46. R. Ruppin and H. Yatom, Phys. Status Solidi B, 74, 647 (1976).

    Article  ADS  Google Scholar 

  47. A. Moroz, J. Phys. Chem. C, 112 10641 (2008).

    Article  Google Scholar 

  48. B. N. Khlebtsov and N. G. Khlebtsov, J. Biomed. Opt., 11, 44002 (2006).

    Article  Google Scholar 

  49. N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transf., 123, 184 (2013).

    Article  ADS  Google Scholar 

  50. D. Pines and P. Nozières, The Theory of Quantum Liquids, W.A. Benjamin, Inc., New York (1966), Vol. I.

    Google Scholar 

  51. J.-Y. Bigot, J.-C. Merle, O. Cregut, and A. Daunois, Phys. Rev. Lett., 75, 4702 (1995).

    Article  ADS  Google Scholar 

  52. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 16th ed., Longman (1995).

  53. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, 4370 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Lebedev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.S., Medvedev, A.S. Absorption and Scattering of Light by Hybrid Metal/J-Aggregate Nanoparticles: Plasmon–Exciton Coupling and Size Effects. J Russ Laser Res 34, 303–322 (2013). https://doi.org/10.1007/s10946-013-9356-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-013-9356-5

Keywords

Navigation