Skip to main content
Log in

Superdense coding with single-particle entanglement

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Recent work has explored the idea that nonlocality or entanglement involving a single particle should be taken seriously and has real measurable consequences. Theoretical and experimental schemes have shown, for example, that single-particle states can violate Bell’s inequalities. Here we discuss the possibility of using single-particle entanglement for implementing a superdense coding protocol. Particle-number superselection rules restrict this scheme to being able to transmit log2(3) bits of information. While this falls short of the two-particle limit of two bits, it still exceeds what can be achieved without entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett., 66, 252 (1991).

    Article  ADS  Google Scholar 

  2. E. Santos, Phys. Rev. Lett., 68, 894 (1992).

    Article  ADS  Google Scholar 

  3. S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett., 68, 895 (1992).

    Article  ADS  Google Scholar 

  4. L. Hardy, Phys. Rev. Lett., 73, 2279 (1994).

    Article  ADS  Google Scholar 

  5. D. M. Greenberger, M. A. Horne, and A. Zeilinger, Phys. Rev. Lett., 75, 2064 (1995).

    Article  ADS  Google Scholar 

  6. D. M. Greenberger, M. A. Horne, and A. Zeilinger, in: F. De Martini, G. Denardo, and Y. Shih (eds.), Quantum Interferometry, VCH Publishers, Weinheim (1996), p. 119.

    Google Scholar 

  7. M. O. Terra Cunha, J. A. Dunningham, and V. Vedral, Proc. Roy. Soc. London A, 463, 2277 (2007).

    Article  MATH  ADS  Google Scholar 

  8. S. Ashhab, K. Maruyama, and F. Nori, Phys. Rev. A, 75, 022108 (2007).

    Article  ADS  Google Scholar 

  9. J. A. Dunningham and V. Vedral, Phys. Rev. Lett., 99 180404 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. J. Cooper and J. A. Dunningham, New J. Phys., 10, 113024 (2008).

    Article  ADS  Google Scholar 

  11. G. Björk, P. Jonsson, and L. L. Sánchez-Soto, Phys. Rev. A, 64, 042106 (2001).

    Article  ADS  Google Scholar 

  12. C. Bennett and S. J. Wiesner, Phys. Rev. Lett., 69, 2881 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys. Rev. Lett., 76, 4656 (1996).

    Article  ADS  Google Scholar 

  14. Julio T. Barreiro, Tzu-Chieh Wei, and Paul G. Kwiat, Nature Phys., 4, 282 (2008).

    Article  Google Scholar 

  15. M. R. Dowling, S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. A, 74, 052113 (2006).

    Article  ADS  Google Scholar 

  16. L. Vaidman and N. Yoran, Phys. Rev. A, 59, 116 (1999).

    Article  ADS  Google Scholar 

  17. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, Phys. Rev. A, 59, 3295 (1999).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob A. Dunningham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunningham, J.A. Superdense coding with single-particle entanglement. J Russ Laser Res 30, 427–434 (2009). https://doi.org/10.1007/s10946-009-9101-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-009-9101-2

Keywords

Navigation