Skip to main content
Log in

Generation of cavity field cluster and GHZ states using Bragg-regime atom interferometry

  • Published:
Journal of Russian Laser Research Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose two schemes for engineering cavity field cluster and GHZ states. The schemes are based on multiport atom interferometry in the Bragg-regime cavity QED. The second-order off-resonant Bragg diffraction of two-level atoms is utilized for generating the desired state. The derived schematics are shown to be experimentally feasible under the prevailing cavity QED research scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For details, see, M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2002).

  2. J. S. Bell, Physics, 1, 195 (1964).

    Google Scholar 

  3. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  4. Although nonlocality is one facet of the entangled states, in general, a deeper understanding of the entanglement is a complicated foundational problem that is far from being solved. For alternative viewpoint, please see, for example, A. Khrennikov, J. Russ. Laser Res., 28, 244 (2007).

  5. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys., 73, 565 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Haroche, Fortschr. Phys., 51, 388 (2003).

    Article  Google Scholar 

  7. A. A. Khan and M. S. Zubairy, Phys. Lett. A, 254, 301 (1999).

    Article  ADS  Google Scholar 

  8. A. Khalique and F. Saif, Phys. Lett. A, 314, 37 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. A. H. Khosa, M. Ikram, and M. S. Zubairy, Phys. Rev. A, 70, 052312 (2004).

    Article  ADS  Google Scholar 

  10. A. A. Khan and M. S. Zubairy, Fortschr. Phys., 46, 417 (1998).

    Article  Google Scholar 

  11. S. Qamar, S. -Y. Zhu, and M. S. Zubairy, Phys. Rev. A, 67, 042318 (2003).

    Article  ADS  Google Scholar 

  12. R. Islam, M. Ikram, R. Ahmed, et al., J. Mod. Opt., 56, 875 (2009).

    Article  ADS  Google Scholar 

  13. R. Islam, M. Ikram, and F. Saif, J. Phys. B, 40, 1359 (2007).

    Article  ADS  Google Scholar 

  14. R. Islam, A. H. Khosa, and F. Saif, J. Phys. B, 41, 035505 (2008).

    Article  ADS  Google Scholar 

  15. H. J. Briegel and R. Raussendorf, Phys. Rev. Lett., 86, 910 (2001).

    Article  ADS  Google Scholar 

  16. M. Borhani and D. Loss, Phys. Rev. A, 71, 034308 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett., 86, 5188 (2001).

    Article  ADS  Google Scholar 

  18. W. Dur and H. J. Briegel, Phys. Rev. Lett., 92, 180403 (2004).

    Article  ADS  Google Scholar 

  19. For review, see, M.A. Nielsen, “Cluster-state quantum computation, Rep. Mod. Phys., 57, 147 (2006).

    Google Scholar 

  20. Y. Tokunaga, S. Kuwashiro, T. Yamamoto, et al., Phys. Rev. Lett., 100, 210501 (2008).

    Article  ADS  Google Scholar 

  21. D. M. Greenberger, M. Horne, and A. Zeilinger, in: M. Kafatos (ed.), Bell’s Theorem, Quantum Theory, and Conception of the Universe, Kluwer, Dordrecht (1989), P-73.

    Google Scholar 

  22. N. D. Mermin, Phys. Rev. Lett., 65, 1838 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. Islam, “Engineering entanglement in cavity quantum electrodynamical systems,” Ph.D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan (2008).

  24. D. Gonta, S. Fritzche, and T. Radtke, Phys. Rev. A, 77, 062312 (2008).

    Article  ADS  Google Scholar 

  25. A. F. Bernhardt and B. W. Shore, Phys. Rev. A, 23, 1290 (1981).

    Article  ADS  Google Scholar 

  26. D. M. Giltner, P. W. McGowan, and S. A. Lee, Phys. Rev. A, 52, 3966 (1995).

    Article  ADS  Google Scholar 

  27. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).

  28. C. C. Guerry, Phys. Rev. A, 54, R2529 (1996).

    Article  ADS  Google Scholar 

  29. S. Deleglise, I. Dotsenko, C. Sayrin, et al., Nature, 455, 510 (2008).

    Article  ADS  Google Scholar 

  30. B. Ya. Dubetskii, A. P. Kazantsev, V. P. Chebotaev and V. P. Yakovlev, Sov. Phys. JETP, 62, 685 (1985).

    Google Scholar 

  31. Y. Torii, Y. Suzuki, M. Kozuma, et al., Phys. Rev. A, 61, 041602 (2000).

    Article  ADS  Google Scholar 

  32. R. Delhuille, C. Champensois, M. Buchner, et al., Appl. Phys. B, 74, 489 (2002).

    Article  ADS  Google Scholar 

  33. A. E. A. Koolen, G. T. Jansen, K. F. E. M. Domen, et al., Phys. Rev. A, 65, 041601 (2000).

    Article  ADS  Google Scholar 

  34. D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, Phys. Rev. Lett., 86, 2191 (2001).

    Article  ADS  Google Scholar 

  35. H. Uys, J. D. Perreault, and A. D. Cronin, Phys. Rev. Lett., 95, 150403 (2005).

    Article  ADS  Google Scholar 

  36. K. J. Vahala, Nature, 424, 839 (2003).

    Article  ADS  Google Scholar 

  37. S. Durr, T. Nonn, and G. Rempe, Nature, 395, 33 (1998).

    Article  ADS  Google Scholar 

  38. M. Weitz, T. Heupel, and T. W. Hansch, Phys. Rev. Lett., 77, 2356 (1996).

    Article  ADS  Google Scholar 

  39. S. Durr, T. Nonn, and G. Rempe, Phys. Rev. Lett., 81, 5705 (1998).

    Article  ADS  Google Scholar 

  40. S. Kunze, S. Durr, and G. Rempe, Europhys. Lett., 34, 343 (1996)

    Article  ADS  Google Scholar 

  41. S. Kunze, S. Durr, K. Dieckmann, et al., J. Mod. Opt., 44, 1863 (1997).

    Article  ADS  Google Scholar 

  42. P. Ball, Nature, 453, 22 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameez-ul-Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, T., Rameez-ul-Islam, Khosa, A.H. et al. Generation of cavity field cluster and GHZ states using Bragg-regime atom interferometry. J Russ Laser Res 30, 267–278 (2009). https://doi.org/10.1007/s10946-009-9072-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-009-9072-3

Keywords

Navigation