Skip to main content
Log in

Distributed gain from multilayer photonic crystal fibers with negative-refraction materials

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Distributed optical amplification from photonic-crystal fibers (PCFs) with layered structure composed of positive-and negative-refraction materials is studied by the finite-difference time-domain method. We found that the transmission spectra, with transmissivity far greater than unity at discrete transmission bands, have a band-gap structure with distributed gain, but the optical gain for defect modes is much smaller than that for transmitting modes, and maxima usually occur at the upper-and lower-band edges. This suggests that PCFs can be employed in dense wavelength-division multiplexed fiber-optics communication systems as transmission media carrying optical signals without crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., 22, 960–963 (1997).

    ADS  Google Scholar 

  2. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., “Highly birefringent photonic crystal fibers,” Opt. Lett., 25, 1325–1327 (2000).

    ADS  Google Scholar 

  3. P. Petropoulos, T. M. Monro, W. Belardi, et al., “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett., 26, 1233–1235 (2001).

    ADS  Google Scholar 

  4. Ququan Wang, Shufeng Wang, Wentao Huang, et al., “Ultrafast and large third-order optical nonlinearity of porous nanosized polycrystal LiNbO3 film,” J. Phys. D: Appl. Phys., 35, 430–432 (2002).

    Article  ADS  Google Scholar 

  5. Jun-Bo Han, Dai-Jian Chen, Sha Ding, et al., “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys., 99, 023526 (2006).

    Google Scholar 

  6. J. C. Knight, J. Arriaga, T. A. Birks, et al., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., 12, 807–809 (2000).

    Article  Google Scholar 

  7. F. Poli, F. Adami, M. Foroni, et al., “Optical parametric amplification in all-silica triangular-core photonic crystal fibers,” Appl. Phys. B: Laser Opt., 81, 251–255 (2005).

    Article  ADS  Google Scholar 

  8. Kristian Hougaard and Frederik D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Reps, 1, 63–83 (2004).

    Article  Google Scholar 

  9. Gao Mingyi, Jiang Chun, and Hu Weisheng, “Dual-pump broadband fiber optical parametric amplifier with a three-section photonic crystal fiber scheme,” SPIE, Nanofabrication: Technologies, Devices, and Applications, 5623, 300–307 (2005).

    Google Scholar 

  10. V. G. Vesolago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Phys. Uspekhi, 10, 509–514 (1968).

    Article  Google Scholar 

  11. D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett., 85, 2933–2936 (2000).

    Article  ADS  Google Scholar 

  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  13. Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a 1ayer with a negative refractive index,” Appl. Phys. Lett., 80, l097–1099 (2002).

    Article  ADS  Google Scholar 

  14. Hideo Kosaka, Takayuki Kawashima, Akihisa Tomigta, et al., “Photonic crystals for microlight wave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett., 74, 1370 (1999).

    Article  ADS  Google Scholar 

  15. Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, et al., “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58, 10096 (1998).

  16. Xianyu Ao and Sailing He, “Negative refraction of left-handed behavior in porous alumina with infiltrated silver at an optical wavelength,” Appl. Phys. Lett., 87, 101112 (2005).

    Google Scholar 

  17. Ilya V. Shadrivov, Andrey A. Sukhorukov, and Yuri S. Kivshar, “Nonlinear surface waves in left-handed materials,” Phys. Rev. E, 69, 016617-9 (2004).

  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagation, 14, 302–308 (1966).

    Article  Google Scholar 

  19. Dong Xiaoting, X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, “Perfectly matched layer absorbing boundary condition for left-handed materials,” IEEE Microwave Wireless Components Lett., 14, 301–303 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Manuscript submitted by the authors in English on September 1, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, T., Fang, M., Ma, J. et al. Distributed gain from multilayer photonic crystal fibers with negative-refraction materials. J Russ Laser Res 28, 48–54 (2007). https://doi.org/10.1007/s10946-007-0003-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-007-0003-x

Keywords

Navigation