Skip to main content
Log in

Sulfur dioxide removal by calcium-modified fibrous KCC-1 mesoporous silica: kinetics, thermodynamics, isotherm and mass transfer mechanism

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The removal of sulfur dioxide from industrial flue gas through dry flue gas desulfurization method commonly involves the use of adsorption process with porous sorbent. The efficiency of this process is highly dependent on the adsorption capacity and the adsorption rate of SO2 onto the sorbent materials. The use of KCC-1 mesoporous silica modified with calcium metal additives (Ca/KCC-1) in SO2 adsorption is examined in a fixed bed reactor system. The adsorption capacity of Ca/KCC-1 is found to be critically governed by the reaction temperature and inlet SO2 concentration where low values of both parameters are favorable to achieve the highest adsorption capacity of 3241.94 mg SO2/g sorbent. SO2 molecules are adsorbed on the surface of Ca/KCC-1 by both physisorption and chemisorption processes as assumed by the Avrami kinetic model. Thermodynamic study shows that the process is exothermic and spontaneous in nature, and changes from an ordered stage on the surface of KCC-1 towards an increasingly random stage. The process is well explained by Freundlich isotherm model indicating a slightly heterogeneous process and moderate adsorption capacity. The adsorption stage is limited by film diffusion at the initial stage and by intraparticle diffusion during the transfer of SO2 into the network of pores before adsorption takes place on the active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

Not applicable.

References

  1. M.M. Meimand, N. Javid, M. Malakootian, Heal. Scope 8(2), e69158 (2019)

    Google Scholar 

  2. Y. Boutillara, J.L. Tombeur, G. De Weireld, P. Lodewyckx, Chem. Eng. J. 372, 631–637 (2019)

    CAS  Google Scholar 

  3. N. Czuma, W. Franus, P. Baran, A. Ćwik, K. Zareska, Turkish J. Chem. 44(1), 155–167 (2020)

    CAS  Google Scholar 

  4. X.M. Pham et al., J. Chem. 2019, 2 (2019)

    Google Scholar 

  5. L. Wei, Z. Gao, Y. Wang, Asia-Pac. J. Chem. Eng. 12(4), 660–670 (2017)

    CAS  Google Scholar 

  6. X. Huang et al., Langmuir 30(36), 10886–10898 (2014)

    CAS  PubMed  Google Scholar 

  7. U. Patil, A. Fihri, A.H. Emwas, V. Polshettiwar, Chem. Sci. 3, 2224–2229 (2012)

    CAS  Google Scholar 

  8. M.Y.S. Hamid, S. Triwahyono, A.A. Jalil, N.W.C. Jusoh, S.M. Izan, T.A.T. Abdullah, Inorg. Chem. 57(10), 5859–5869 (2018)

    Google Scholar 

  9. M. A. Hanif, N. Ibrahim, K. Md. Isa, T. A. T. Abdullah, A. A. J., Mater. Today Proc. 47, 1323–1328 (2021)

  10. M. Adli, H. Naimah, I. Khairuddin, M.I. Fahmi, M.R.T. Amran, T.A.A. Abdul, Jalil, Tailoring the properties of calcium modified fibrous mesoporous silica KCC-1 for optimized sulfur dioxide removal. Micropor. Mesopor. Mater. (2022). https://doi.org/10.1016/j.micromeso.2021.111610

    Article  Google Scholar 

  11. N. Álvarez-Gutiérrez, M.V. Gil, F. Rubiera, C. Pevida, Chem. Eng. J. 307, 249–257 (2017)

    Google Scholar 

  12. H. Wang, C. You, Chem. Eng. J. 350, 268–277 (2018)

    CAS  Google Scholar 

  13. S. N. Kudahi, A. R. Noorpoor, N. M. Mahmoodi, J. CO2 Util. 21, 17–29 (2017)

  14. Z. Qie et al., J. Energy Inst. 93(2), 802–810 (2020)

    CAS  Google Scholar 

  15. J. Dou, Y. Zhao, X. Duan, H. Chai, L. Li, J. Yu, ACS Omega 5, 19194–19201 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Li et al., Chem. Eng. J. 353, 858–866 (2018)

    CAS  Google Scholar 

  17. M.M. Meimand, A.J. Jafari, A. Nasiri, M. Malakootian, J. Air Pollut. Heal. 5(2), 107–120 (2020)

    Google Scholar 

  18. S.I. Anthonysamy, P. Lahijani, M. Mohammadi, A.R. Mohamed, Korean J. Chem. Eng. 37(1), 130–140 (2020)

    CAS  Google Scholar 

  19. N. Mozaffari, A. Mirzahosseini, N. Mozaffari, Anal. Methods Environ. Chem. J. 3(2), 92–107 (2020)

    CAS  Google Scholar 

  20. C. Zhao, Y. Guo, W. Li, C. Bu, X. Wang, P. Lu, Chem. Eng. J. 312, 50–58 (2017)

    CAS  Google Scholar 

  21. A. Nieto-Márquez, E. Atanes, J. Morena, F. Fernández-Martínez, J.L. Valverde, Fuel Process. Technol. 144, 274–281 (2016)

    Google Scholar 

  22. P. Gaudin et al., Appl. Catal. A 504, 110–118 (2015)

    CAS  Google Scholar 

  23. C.S. Lin, N. Ibrahim, N. Ahmad, M.A. Hanif, S. Abdullah, Malaysian J. Fundam. Appl. Sci. 17(1), 84–89 (2021)

    Google Scholar 

  24. T.C. Drage et al., J. Mater. Chem. 22, 2815–2823 (2012)

    CAS  Google Scholar 

  25. L. Largitte, R. Pasquier, Chem. Eng. Res. Des. 109, 495–504 (2016)

    CAS  Google Scholar 

  26. Y. Liu, X. Yu, Appl. Energy 211, 1080–1088 (2018)

    CAS  Google Scholar 

  27. S. Mutyala, M. Jonnalagadda, H. Mitta, R. Gundeboyina, Chem. Eng. Res. Des. 143, 241–248 (2019)

    CAS  Google Scholar 

  28. R. Serna-Guerrero, A. Sayari, Chem. Eng. J. 161(1–2), 182–190 (2010)

    CAS  Google Scholar 

  29. R.L. White, C.M. White, H. Turgut, A. Massoud, Z.R. Tian, J. Taiwan Inst. Chem. Eng. 85, 18–28 (2018)

    CAS  Google Scholar 

  30. Y. Xuan, Q. Yu, H. Gao, K. Wang, W. Duan, Chem. Eng. J. 395, 124984 (2020)

    CAS  Google Scholar 

  31. N. Ayawei, A.N. Ebelegi, D. Wankasi, J. Chem. 2017, 1–11 (2017)

    Google Scholar 

  32. A. Dada, A. Olalekan, A. Olatunya, O. Dada, IOSR, J. Appl. Chem. 3(1), 38–45 (2012)

    Google Scholar 

  33. G. Song, X. Zhu, R. Chen, Q. Liao, Y.D. Ding, L. Chen, Chem. Eng. J. 283, 175–183 (2016)

    CAS  Google Scholar 

  34. H. Yu, X. Wang, C. Xu, D.L. Chen, W. Zhu, R. Krishna, Chem. Eng. J. 269, 135–147 (2015)

    CAS  Google Scholar 

  35. K.O. Yoro, M.K. Amosa, P.T. Sekoai, J. Mulopo, M.O. Daramola, Int. J. Sustain. Eng. 13(1), 54–67 (2020)

    Google Scholar 

  36. B. Li, C. Ma, Energy Procedia 153, 471–477 (2018)

    CAS  Google Scholar 

  37. V. Polshettiwar, D. Cha, X. Zhang, J.M. Basset, Angew. Chemie 49(50), 9652–9656 (2010)

    CAS  Google Scholar 

  38. M. Thommes et al., Pure Appl. Chem. 87, 1–19 (2015)

    Google Scholar 

  39. S. Zhou et al., Catalysts 8, 2 (2018)

    Google Scholar 

  40. C.S. Ferreira, P.L. Santos, J.A. Bonacin, R.R. Passos, L.A. Pocrifka, Mater. Res. 18(3), 639–643 (2015)

    Google Scholar 

  41. J.P. Singh, W.C. Lim, S.O. Won, J. Song, K.H. Chae, J. Korean Phys. Soc. 72(8), 890–899 (2018)

    CAS  Google Scholar 

  42. R. Tailor, A. Ahmadalinezhad, A. Sayari, Chem. Eng. J. 240, 462–468 (2014)

    CAS  Google Scholar 

  43. R. Tailor, A. Sayari, Chem. Eng. J. 289, 142–214 (2016)

    CAS  Google Scholar 

  44. Z. Zhang, J. Wang, L. Lang, ACS Omega 3(11), 16369–16376 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. P. Ammendola, F. Raganati, R. Chirone, Chem. Eng. J. 322, 302–313 (2017)

    CAS  Google Scholar 

  46. D. Tiwari, C. Goel, H. Bhunia, P.K. Bajpai, Sep. Purif. Technol. 181, 107–122 (2017)

    CAS  Google Scholar 

  47. S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed, Energy Fuels 24(1), 427–431 (2010)

    CAS  Google Scholar 

  48. B. Zhou et al., J. Air Waste Manag. Assoc. 65(2), 165–170 (2015)

    CAS  PubMed  Google Scholar 

  49. H. Wang, D. Xie, Q. Chen, C. You, Chem. Eng. J. 303, 425–432 (2016)

    CAS  Google Scholar 

  50. X. Gao et al., Chinese J. Chem. Eng. 26, 2139–2147 (2018)

    CAS  Google Scholar 

  51. P. Cheng, B.J. Tatarchuk, Chem. Eng. Sci. 201, 157–166 (2019)

    CAS  Google Scholar 

  52. M. Chen, X. Deng, F. He, Energy Fuels 30(2), 1183–1191 (2016)

    CAS  Google Scholar 

  53. F. Rahmani, D. Mowla, G. Karimi, A. Golkhar, B. Rahmatmand, Sep. Purif. Technol. 153, 162–169 (2015)

    CAS  Google Scholar 

  54. A. de Sá, A. S. Abreu, I. Moura, A. V. Machado, Water Purification, (Ed. Elsevier Inc., 2017), pp. 289–322.

  55. F.O. Erdogan, Chem. Chem. Technol. 13(2), 129–135 (2019)

    CAS  Google Scholar 

  56. P. Nanta, K. Kasemwong, W. Skolpap, J. Environ. Chem. Eng. 6, 794–802 (2018)

    CAS  Google Scholar 

  57. N. Can, B.C. Ömür, A. Altındal, Sens. Actuators B 237, 953–961 (2016)

    CAS  Google Scholar 

  58. C. Feng et al., New J. Chem. 44(6), 2256–2267 (2020)

    CAS  Google Scholar 

  59. R.V. Sales et al., Catalysts 9, 651 (2019)

    CAS  Google Scholar 

  60. K.L. Tan, B.H. Hameed, J. Taiwan Inst. Chem. Eng. 74, 25–48 (2017)

    CAS  Google Scholar 

  61. F. Wu, R. Tseng, R. Juang, Chem. Eng. J. 153, 1–8 (2009)

    CAS  Google Scholar 

  62. Y. Teng, Z. Liu, G. Xu, K. Zhang, Energies 10, 115 (2017)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Collaborative Research Grant (9023-00001) among Universiti Malaysia Perlis, Universiti Teknologi Malaysia, Universiti Malaysia Pahang and Universiti Tun Hussein Onn Malaysia.

Funding

This study was supported by Collaborative Research Grant (9023-00001) among Universiti Malaysia Perlis, Universiti Teknologi Malaysia, Universiti Malaysia Pahang and Universiti Tun Hussein Onn Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NI; Methodology: MAH, NI; Formal analysis and investigation: MAH; Writing—original draft preparation: MAH; Writing—review and editing: NI, UFMA; Funding acquisition: NI, TATA, AAJ; Resources: AAJ; Supervision: NI, KMI, AAJ.

Corresponding author

Correspondence to Naimah Ibrahim.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, M.A., Ibrahim, N., Md. Isa, K. et al. Sulfur dioxide removal by calcium-modified fibrous KCC-1 mesoporous silica: kinetics, thermodynamics, isotherm and mass transfer mechanism. J Porous Mater 29, 501–514 (2022). https://doi.org/10.1007/s10934-021-01195-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01195-w

Keywords

Navigation