Skip to main content
Log in

Synthesis and evaluation of activated carbon spheres with copper modification for gaseous elemental mercury removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Millimeter resin-based activated carbon spheres were introduced for the removal of elemental mercury, and some metallic oxides were doped to activated carbon spheres to enhance the Hg0 removal ability. The experimental results indicated that prepared activated carbon spheres (PAC) and PAC-Cu presented almost identical with a smooth surface without cracks and show well-developed pore structure with high surface area. The Hg0 removal performance of PAC was higher than that of commercial activated carbon spheres (SAC) due to the more active groups, and PAC-Cu showed the highest Hg0 removal ability among doped metallic oxides. Besides, the doped Cu can enhance the redox ability of PAC and be beneficial to activate the active component of PAC, which can promote observably the Hg0 removal performance. Meanwhile, PAC-Cu has an ability of sulfur resistance. Furthermore, the mercury combination property and XPS analysis results of the fresh and used PAC-Cu indicates that the possible removal mechanism of PAC-Cu is the synergism of Hg0 oxidation by active species of C=O or C–O and the doped Cu catalysis activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.S. Gaffney, N. Marley, Int. J. Nanomed. 9, 1883–1889 (2014)

    Google Scholar 

  2. T.L. Tang, K. Nagashima, T. Hasegawa, Int. J. Life Cycle Assess. 1, 1–11 (2015)

    Google Scholar 

  3. V. Iyyanki, V.M. Muralikrishna, in Environmental Management (Elsevier, India, 2017), pp. 337–397

    Google Scholar 

  4. Y.T. Li, H.H. Yi, X.L. Tang, Chem. Eng. J. 304, 89–97 (2016)

    Article  CAS  Google Scholar 

  5. S.X. Wang, L. Zhang, B. Zhao, Energy Fuels 26, 4635–4642 (2012)

    Article  CAS  Google Scholar 

  6. Y.X. Liu, Q. Wang, J.F. Pan, J. Hazard. Mater. 292, 164–172 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. B. Zhao, H.H. Yi, X.L. Tang, Chem. Eng. J. 286, 585–593 (2016)

    Article  CAS  Google Scholar 

  8. F.Y. Wang, S.X. Wang, L. Zhang, J. Hazard. Mater. 302, 27–35 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. N. Pirrone, S. Cinnirella, X. Feng, Atmos. Chem. Phys. 10, 5951–5964 (2010)

    Article  CAS  Google Scholar 

  10. C.T. Driscoll, R.P. Mason, H.M. Chan, Environ. Sci. Technol. 47, 4967–4983 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y.S. Zhang, W. Duan, Z. Liu, Fuel 128, 274–280 (2014)

    Article  CAS  Google Scholar 

  12. G.L. Li, B.X. Shen, S.J. Wang, Fuel 145, 189–195 (2015)

    Article  CAS  Google Scholar 

  13. H. Wu, H. Liu, Q.H. Wang, Proc. Combust. Inst. 34, 2847–2854 (2013)

    Article  CAS  Google Scholar 

  14. G.L. Li, B.X. Shen, B.X. Li, Fuel Process. Technol. 133, 43–50 (2015)

    Article  CAS  Google Scholar 

  15. Y. Zhao, R.L. Hao, P. Zhang, Fuel 13, 113–121 (2014)

    Article  CAS  Google Scholar 

  16. C. He, B.X. Shen, J.H. Chen, Environ. Sci. Technol. 48, 7891–7898 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Y.F. Guo, N.Q. Yan, S.J. Ynag, J. Hazard. Mater. 213–214, 62–70 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Liu, Y. Wang, H. Wang, Z. Wu, Catal. Commun. 12, 1291–1294 (2011)

    Article  CAS  Google Scholar 

  19. S. Zhao, Y. Ma, Z. Qu, N. Yan, Z. Li, J. Xie, W. Chen, Catal. Sci. Technol. 4, 4036–4044 (2014)

    Article  CAS  Google Scholar 

  20. W.Q. Xu, H.R. Wang, T.Y. Zhu, J. Environ. Sci. 25, 393–398 (2013)

    Article  CAS  Google Scholar 

  21. J.C. Wang, Y.P. Zhang, L. Han, Fuel 103, 73–79 (2013)

    Article  CAS  Google Scholar 

  22. J.H. Pavlish, L.L. Hamre, Y. Zhuang, Fuel 89, 838–847 (2010)

    Article  CAS  Google Scholar 

  23. C.R. McLarnon, E.J. Granite, H.W. Pennline, Fuel Process. Technol. 87, 85–89 (2005)

    Article  CAS  Google Scholar 

  24. G.A. Norton, H. Yang, R.C. Brown, Fuel 82, 107–116 (2003)

    Article  CAS  Google Scholar 

  25. K.C. Galbreath, C.J. Zygarlicke, E.S. Olson, Sci. Total Environ. 261, 149–155 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. C.W. Lee, R.K. Srivastave, S.B. Ghorishi, J. Air Waste Manage. Assoc. 54, 1560–1566 (2004)

    Article  CAS  Google Scholar 

  27. Z. Mei, Z. Shen, Q. Zhao, J. Hazard. Mater. 152, 721–729 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. C. Senior, C.J. Bustard, M. Durham, Fuel Process. Technol. 85, 601–612 (2004)

    Article  CAS  Google Scholar 

  29. S. Yang, Y. Guo, N. Yan, J. Hazard. Mater. 186, 508–515 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. J. Xie, H. Xu, Z. Qu, J. Colloid Interface Sci. 428, 121–127 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. F. Scala, C. Anacleria, S. Cimino, Fuel 108, 13–18 (2013)

    Article  CAS  Google Scholar 

  32. C. He, B. Shen, J. Chen, Environ. Sci. Technol. 48, 7891–7898 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. J. Zhou, W. Hou, P. Qi, Environ. Sci. Technol. 47, 10056–10062 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. A.J. Romero-Anaya, M. Ouzzine, M.A. Lillo-Ro´denas, Carbon 68, 296–307 (2014)

    Article  CAS  Google Scholar 

  35. C.M. Zhang, W. Song, G.H. Sun, et al., Ind. Eng. Chem. 53, 4271–4276 (2014)

    Article  CAS  Google Scholar 

  36. Y. Liu, L.K. Pan, T.Q. Chen, Electrochim. Acta 151, 489–496 (2015)

    Article  CAS  Google Scholar 

  37. J. Ludwinowicz, M. Jaroniec, Carbon 82, 297–303 (2015)

    Article  CAS  Google Scholar 

  38. S. Zhao, Z. Qu, N. Yan, Fuel 158, 891–897 (2015)

    Article  CAS  Google Scholar 

  39. S. Zhao, H.M. Xu, J. Mei, Fuel 200, 236–243 (2017)

    Article  CAS  Google Scholar 

  40. W.Q. Xu, H.R. Wang, X. Zhou, Chem. Eng. J. 243, 380–385 (2014)

    Article  CAS  Google Scholar 

  41. J. Liu, M.A. Cheney, F. Wu, J. Hazard. Mater. 186, 108–113 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. W.J. Xiang, J. Liu, M. Chang, Chem. Eng. J. 200–202, 91–96 (2012)

    Article  CAS  Google Scholar 

  43. J. Choma, K. Jedynak, W. Fahrenholz, Appl. Surf. Sci. 289, 592–600 (2014)

    Article  CAS  Google Scholar 

  44. C.M. Zhang, W. Song, Q.L. Ma, Energy Fuels 30, 4181–4190 (2016)

    Article  CAS  Google Scholar 

  45. J.C. Serrano-Ruiz, E.V. Ramos-Fernández, J. Silvestre-Albero, Mater. Res. Bull. 43, 1850–1857 (2008)

    Article  CAS  Google Scholar 

  46. Y.R. Zuo, H.H. Yi, X.L. Tang, J. Chem. Technol. Biotechnol. 90, 1876–1885 (2015)

    Article  CAS  Google Scholar 

  47. S.R.D. Miguel, J.I. Vilella, E.L. Jablonski, Appl. Catal. A 232, 237–246 (2002)

    Article  Google Scholar 

  48. Y. Xie, C.T. Li, L.K. Zhao, Appl. Surf. Sci. 333, 59–67 (2015)

    Article  CAS  Google Scholar 

  49. S.S. Tao, C.T. Li, X.P. Fan, Chem. Eng. J. 210, 547–556 (2012)

    Article  CAS  Google Scholar 

  50. G. Li, B. Shen, F. Li, Fuel Process. Technol. 133, 43–50 (2015)

    Article  CAS  Google Scholar 

  51. X. Zhu, J. Gu, Y. Wang, Chem.Commun. 50, 8779–8782 (2014)

    Article  CAS  Google Scholar 

  52. Y. Chi, N.Q. Yan, Z. Qu, J. Hazard. Mater. 166, 776–778 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. Y. Li, C.Y. Wu, Environ. Sci. Technol. 40, 6444–6448 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. H. Li, C.Y. Wu, Y. Li, Environ. Sci. Technol. 45, 7394–7400 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. M.A. Lopez-Anton, Y. Yuan, R. Perry, Fuel 89, 629–634 (2010)

    Article  CAS  Google Scholar 

  56. Z. Tan, L. Sun, J. Xiang, Carbon 50, 362–371 (2012)

    Article  CAS  Google Scholar 

  57. Y. Su, Z. Zhang, H. Liu, Appl. Catal. A 200, 448–457 (2017)

    Article  CAS  Google Scholar 

  58. K. Wang, X. Dong, C. Zhao, Electrochim. Acta 152, 433–442 (2015)

    Article  CAS  Google Scholar 

  59. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, Appl. Surf. Sci. 255, 730–2734 (2008)

    Article  CAS  Google Scholar 

  60. G.W. Wu, S.B. He, H.P. Peng, Anal. Chem. 86, 10955–10960 (2014)

    Article  CAS  PubMed  Google Scholar 

  61. G. Li, B. Shen, Y. Li, J. Hazard. Mater. 298, 162–169 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Nature Science Foundation of China (No. 51002166, 51172251 and 51061130536), National Science Foundation of China for Youths (Nos. 51402324 and 21706179), National Science Foundation of ShanXi for Youths (Nos. 2015021107 and 201701D221037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changming Zhang or Xiaochao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Song, W., Zhang, X. et al. Synthesis and evaluation of activated carbon spheres with copper modification for gaseous elemental mercury removal. J Porous Mater 26, 693–703 (2019). https://doi.org/10.1007/s10934-018-0669-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0669-1

Keywords

Navigation