Skip to main content
Log in

In situ non-catalyst synthesis of multiwall carbon nanotubes and nanofibers on commercial stainless steel cylinder

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Herein, we report the in situ synthesis of multi wall carbon nanotubes (MWCNTs) in addition to nanofibers on the surface of an acid etched commercial stainless cylinder in a catalytic chemical vapor deposition reactor using ethanol as a carbon source. The MWCNTs and nanofibers mixture was characterized via SEM, EDS, TEM and XRD techniques. SEM imaging showed randomly oriented thick carbon nanotubes (CNTs) of different shapes and sizes accompanied by carboneous material. EDX analysis showed carbon content of ≈ 97%. The TEM images showed thick (MWCNTs) in the range of 20–70 nm with ≈ 0.4 nm distance between the concentric tubes forming the walls. Furthermore, the SEM and TEM reflections exhibited carbon nano-fibers of about 300 nm diameters. The XRD confirmed the characteristic peaks of the graphite at 2Ө value of 26° and 43°. The structure of the nanotubes was correlated to the surface morphology of the steel substrate. The simultaneous formation of CNTs and nanofiber on stainless steel without a catalyst was successfully accomplished. The growth of nanotubes and nanofibers almost takes the same approaches with the difference in the size of nanoparticles and its orientation was detrimental in the type of product. Smaller nanopraticles entering longitudinally are observed inside the nanotubes, whereas transversely oriented large nanoparticles are observed in case of nanofibers. An excellent perceptive of nanotubes and nanofibers growth on metal surface is perhaps an excellent approach to explore the mass production of such carbon nanostructures, control conditions and surface in quest to tailor well-designed structures. These results give a clue to the possibility of using commercial stainless steel as a substrate and catalyst for versatile route preparation of multi-wall CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.W. Kroto et al., C 60: buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  CAS  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  3. A. Firsov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. A. Hirsch, The era of carbon allotropes. Nat. Mater. 9(11), 868–871 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. A. Szabo et al., Synthesis, characterization and use of coiled carbon nanotubes. Nanopages 1(3), 263–293 (2006)

    Article  Google Scholar 

  6. M. Kumar, Y. Ando, Carbon Nanotube Synthesis and Growth Mechanism (INTECH Open Access Publisher, Rijeka, 2011)

    Book  Google Scholar 

  7. L. Camilli et al., Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel. Beilstein J. Nanotechnol. 3(1), 360–367 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Kim et al., Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth. Met. 160(7), 584–587 (2010)

    Article  CAS  Google Scholar 

  9. D.Q. Duy et al., Growth of carbon nanotubes on stainless steel substrates by DC-PECVD. Appl. Surf. Sci. 256(4), 1065–1068 (2009)

    Article  CAS  Google Scholar 

  10. C.E. Baddour et al., A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon 47(1), 313–318 (2009)

    Article  CAS  Google Scholar 

  11. L. Camilli et al., The synthesis and characterization of carbon nanotubes grown by chemical vapor deposition using a stainless steel catalyst. Carbon 49(10), 3307–3315 (2011)

    Article  CAS  Google Scholar 

  12. A. Eatemadi et al., Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P.M. Parthangal, R.E. Cavicchi, M.R. Zachariah, A generic process of growing aligned carbon nanotube arrays on metals and metal alloys. Nanotechnology 18(18), 185605 (2007)

    Article  CAS  Google Scholar 

  14. X. Lepro, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48(12), 3621–3627 (2010)

    Article  CAS  Google Scholar 

  15. M. Zhang, R. Baughman, Assembly of Carbon Nanotube Sheets (INTECH Open Access Publisher, Rijeka, 2011)

    Book  Google Scholar 

  16. S. Sethi, A. Dhinojwala, Superhydrophobic conductive carbon nanotube coatings for steel. Langmuir 25(8), 4311–4313 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. H. Miao et al., Growth of carbon nanotubes on transition metal alloys by microwave-enhanced hot-filament deposition. Thin Solid Films 484(1), 58–63 (2005)

    Article  CAS  Google Scholar 

  18. A. Najafi, A novel synthesis method of nanostructured MgO-coated hollow carbon nanofibers via CO decomposition over Mg/MgO catalyst. Ceram. Int. 43(12), 9220–9225 (2017)

    Article  CAS  Google Scholar 

  19. H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms. Carbon 11(6), 583–590 (1973)

    Article  Google Scholar 

  20. R. Baker, P. Harris, S. Terry, Unique form of filamentous carbon. Nature 253(5486), 37 (1975)

    Article  CAS  Google Scholar 

  21. A. Thakur, A. Manna, S. Samir, Direct growth of coiled carbon nanofibers without nanocatalyst. Diam. Relat. Mater. 74, 100–107 (2017)

    Article  CAS  Google Scholar 

  22. K. Saito, A.S. Gordon, F.A. Williams, W.F. Stickle, A study of the early history of soot formation in various hydrocarbon diffusion flames. Combust. Sci. Technol. 80, 103–119 (1991)

    Article  CAS  Google Scholar 

  23. E.J. Duplock, M. Scheffler, P.J. Lindan, Hallmark of perfect graphene. Phys. Rev. Lett. 92(22), 225502 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. F. OuYang et al., Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects. J. Phys. Chem. C 112(31), 12003–12007 (2008)

    Article  CAS  Google Scholar 

  25. H. Terrones, M. Terrones, Curved nanostructured materials. New J. Phys. 5(1), 126 (2003)

    Article  Google Scholar 

  26. M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Z.G. Sun, X.J. Qiao, X. Wan, Q.G. Ren, W.C. Li, S.Z. Zhang, X.D. Guo, The synthesis and microwave absorbing properties of MWCNTs and MWCNTs/ferromagnet composites. Appl. Phys. A. 122(87), 1–13 (2016)

    Google Scholar 

  28. J. Chen et al., Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions. Carbon 39(10), 1467–1475 (2001)

    Article  CAS  Google Scholar 

  29. V. Kovalevski, A. Safronov, Pyrolysis of hollow carbons on melted catalyst. Carbon 36(7–8), 963–968 (1998)

    Article  CAS  Google Scholar 

  30. L. Yuan, K. Saito, C. Pan, F.A. Williams, A.S. Gordon, Nanotubes from methane flames. Chem. Phys. Lett. 340, 237–241 (2001)

    Article  CAS  Google Scholar 

  31. A. Osikoya et al., Synthesis, Characterization and adsorption studies of fluorine–doped carbon nanotubes. Dig. J. Nanomater. Biostruct. 9, 1187–1197 (2014)

    Google Scholar 

  32. M. Elamin, B.Y. Abdulkhair, K.K. Taha, Effect of urea on the shape and structure of carbon nanotubes. Z. Naturforsch. A 73(2), 113–120 (2018)

    Article  CAS  Google Scholar 

  33. F. He et al., The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11), 3139–3144 (2010)

    Article  CAS  Google Scholar 

  34. Y. Jiang et al., Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J. Power Sources 307, 190–198 (2016)

    Article  CAS  Google Scholar 

  35. J. Sheng et al., Synthesis of microporous carbon nanofibers with high specific surface using tetraethyl orthosilicate template for supercapacitors. Int. J. Hydrogen Energy 41(22), 9383–9393 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the deanship of scientific research at (IMSIU), KSA for funding this project (361217–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Taha.

Ethics declarations

Conflict of interest

All of the authors declare no conflict of interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, K.K., Elamin, M.R. & Abdulkhair, B.Y. In situ non-catalyst synthesis of multiwall carbon nanotubes and nanofibers on commercial stainless steel cylinder. J Porous Mater 26, 525–531 (2019). https://doi.org/10.1007/s10934-018-0638-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0638-8

Keywords

Navigation