Skip to main content
Log in

Adsorption of CO2 and CO on H-zeolites with different framework topologies and chemical compositions and a correlation to probing protonic sites using NH3 adsorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Adsorption of CO2 and CO at 25 °C has been conducted using commercially-available (Y, ZSM-5) and laboratory-synthesized (SSZ-13, SAPO-34) H-zeolites with different framework topologies and chemical compositions, and their textual and surface properties have been characterized by N2 sorption and NH3 adsorption techniques. All the zeolites were microporous, although ZSM-5 and SSZ-13 apparently showed a mesoporous sorption behavior due to the interparticle spaces. The zeolites had Si/Al values in the order of SSZ-13 (16.44) > ZSM-5 (16.08) ≫ Y (2.82) ≫ SAPO-34 (0.19). Regardless, high CO2 adsorption capacity was obtained for SSZ-13 and SAPO-34 with a CHA framework. The FAU zeolite Y with the highest micropore volume showed less CO2 adsorption than the CHA zeolites and the MFI-type ZSM-5 yielded the poorest performance. Probing acid sites in the H-form zeolites using NH3 disclosed that these all contain both weak and strong acid sites with significant dependence of their strengths and amounts on the topology. The acid strength of the weak acid sites in the CHA zeolites was the weakest, which might allow a stronger interaction with CO2. The H-zeolites gave CO2/CO selectivity factors that were in the range of 4.61–11.0, depending on the framework topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Sircar, Ind. Eng. Chem. Res. 45, 5435 (2006)

    Article  CAS  Google Scholar 

  2. R.T. Yang, Adsorbents: Fundamental and Applications (Wiley, Hoboken, 2003), pp. 8–190

    Book  Google Scholar 

  3. P.K. Prabhakaran, J. Deschamps, J. Porous Mater. 22, 1073 (2015)

    Article  Google Scholar 

  4. J.R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.K. Jeong, P.B. Balbuena, H.C. Zhou, Coord. Chem. Rev. 255, 1791 (2011)

    Article  CAS  Google Scholar 

  5. J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38, 1477 (2009)

    Article  CAS  Google Scholar 

  6. P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. de Weireld, J.S. Chang, D.Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, Langmuir 24, 7245 (2008)

    Article  CAS  Google Scholar 

  7. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Science 329, 424 (2010)

    Article  CAS  Google Scholar 

  8. D. Yuan, D. Zhao, D. Sun, H.C. Zhou, Angew. Chem. Int. Ed. 49, 5357 (2010)

    Article  CAS  Google Scholar 

  9. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998 (2005)

    Article  CAS  Google Scholar 

  10. M.H. Kim, S.O. Choi, S.T. Choo, Clean Technol. 19, 370 (2013)

    Article  Google Scholar 

  11. M. Palomino, A. Corma, J.L. Jorda, F. Rey, S. Valencia, Chem. Commun. 48, 215 (2012)

    Article  CAS  Google Scholar 

  12. K.S. Walton, M.B. Abney, M.D. LeVan, Microporous Mesoporous Mater. 91, 78 (2006)

    Article  CAS  Google Scholar 

  13. D. Barthomeuf, Microporous Mesoporous Mater. 66, 1 (2003)

    Article  CAS  Google Scholar 

  14. S.K. Wirawan, D. Creaser, Sep. Purif. Technol. 52, 224 (2006)

    Article  CAS  Google Scholar 

  15. G. Maurin, Ph Llewellyn, Th Poyet, B. Kuchta, J. Phys. Chem. B 109, 125 (2005)

    Article  CAS  Google Scholar 

  16. R.A. Schoonheydt, P. Geerlings, E.A. Pidko, R.A. van Santen, J. Mater. Chem. 22, 18705 (2012)

    Article  CAS  Google Scholar 

  17. G. Vitale, L.M. Bull, B.M. Powell, A.K. Cheetham, J. Chem. Soc. Chem. Commun. 2253 (1995)

  18. J.A. Delgado, M.A. Uguina, J.M. Gomez, L. Ortega, Sep. Purif. Technol. 48, 223 (2006)

    Article  CAS  Google Scholar 

  19. S.U. Rege, R.T. Yang, AIChE J. 46, 734 (2000)

    Article  CAS  Google Scholar 

  20. G.T. Kokotailo, S.L. Lawton, D.H. Olson, W.M. Meier, Nature 272, 437 (1978)

    Article  CAS  Google Scholar 

  21. L.J. Smith, A. Davidson, A.K. Cheetham, Catal. Lett. 49, 143 (1997)

    Article  CAS  Google Scholar 

  22. I. Daems, R. Singh, G. Baron, J. Denayer, Chem. Commun. 1316 (2007)

  23. M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown, J. Am. Chem. Soc. 134, 1970 (2012)

    Article  CAS  Google Scholar 

  24. M. Itakura, I. Goto, A. Takahashi, T. Fujitani, Y. Ide, M. Sadakane, T. Sano, Microporous Mesoporous Mater. 144, 91 (2011)

    Article  CAS  Google Scholar 

  25. A.M. Prakash, S. Unnikrishnan, J. Chem. Soc. Faraday Trans. 90, 2291 (1994)

    Article  CAS  Google Scholar 

  26. A. Saito, H.C. Foley, AIChE J. 37, 429 (1991)

    Article  CAS  Google Scholar 

  27. W.H. Yang, M.H. Kim, S.W. Ham, Catal. Today 123, 94 (2007)

    Article  CAS  Google Scholar 

  28. A.S. Kovo, O. Hernandez, S.M. Holmes, J. Mater. Chem. 19, 6207 (2009)

    Article  CAS  Google Scholar 

  29. Q. Zhu, J.N. Kondo, T. Tatsumi, S. Inagaki, R. Ohnuma, Y. Kubota, Y. Shimodaira, H. Kobayashi, K. Domen, J. Phys. Chem. 111, 5409 (2007)

    CAS  Google Scholar 

  30. G. Liu, P. Tian, J. Li, D. Zhang, F. Zhou, Z. Liu, Microporous Mesoporous Mater. 111, 143 (2008)

    Article  CAS  Google Scholar 

  31. N. Salman, C.H. Ruscher, J.C. Buhl, W. Lutz, H. Toufar, M. Stocker, Microporous Mesoporous Mater. 90, 339 (2006)

    Article  CAS  Google Scholar 

  32. M. Krol, W. Mozgawa, W. Jastrzebski, K. Barczyk, Microporous Mesoporous Mater. 156, 181 (2012)

    Article  CAS  Google Scholar 

  33. P.A. Jacobs, H.K. Beyer, J. Valyon, Zeolites 1, 161 (1981)

    Article  CAS  Google Scholar 

  34. K.S. Triantafyllidis, L. Nalbandian, P.N. Trikalitis, A.K. Ladavos, T. Mavromoustakos, C.P. Nicolaides, Microporous Mesoporous Mater. 75, 89 (2004)

    Article  CAS  Google Scholar 

  35. F. Pechar, D. Rykl, Zeolites 3, 333 (1983)

    Article  CAS  Google Scholar 

  36. A.J.M. de Man, R.A. van Santen, Zeolites 12, 269 (1992)

    Article  Google Scholar 

  37. F.D.P. Mees, L.R.M. Martens, M.J.G. Janssen, A.A. Verberckmoes, E.F. Vansant, Chem. Commun. 44 (2003)

  38. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  39. A.J.J. Koekkoek, H. Xin, Q. Yang, C. Li, E.J.M. Hensen, Microporous Mesoporous Mater. 145, 172 (2011)

    Article  CAS  Google Scholar 

  40. J.W. Park, J.Y. Lee, K.S. Kim, S.B. Hong, G. Seo, Appl. Catal. A 339, 36 (2008)

    Article  CAS  Google Scholar 

  41. D.M. D’Alessandro, B. Smit, J.R. Long, Angew. Chem. Int. Ed. 49, 6058 (2010)

    Article  Google Scholar 

  42. T.D. Pham, M.R. Hudson, C.M. Brown, R.F. Lobo, ChemSusChem 7, 3031 (2014)

    Article  CAS  Google Scholar 

  43. R.F. Lobo, AIChE J. 54, 1402 (2008)

    Article  CAS  Google Scholar 

  44. S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2, 796 (2009)

    Article  CAS  Google Scholar 

  45. J. McEwen, J.D. Hayman, A.O. Yazaydin, Chem. Phys. 412, 72 (2013)

    Article  CAS  Google Scholar 

  46. R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Energy Fuels 15, 279 (2001)

    Article  CAS  Google Scholar 

  47. T.D. Pham, Q. Liu, R.F. Lobo, Langmuir 29, 832 (2013)

    Article  CAS  Google Scholar 

  48. N. Katada, H. Igi, J.H. Kim, M. Niwa, J. Phys. Chem. B 101, 5969 (1997)

    Article  CAS  Google Scholar 

  49. H.Y. Jeon, C.H. Shin, H.J. Jung, S.B. Hong, Appl. Catal. A 305, 70 (2006)

    Article  CAS  Google Scholar 

  50. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 106, 6092 (1984)

    Article  CAS  Google Scholar 

  51. N. Katada, K. Nouno, J.K. Lee, J. Shin, S.B. Hong, M. Niwa, J. Phys. Chem. C 115, 22505 (2011)

    Article  CAS  Google Scholar 

  52. G.I. Kapustin, T.R. Brueva, A.L. Klyachko, S. Beran, B. Wichterlova, Appl. Catal. 42, 239 (1988)

    Article  CAS  Google Scholar 

  53. L. Smith, A.K. Cheetham, L. Marchese, J.M. Thomas, P.A. Wright, J. Chen, Catal. Lett. 41, 13 (1996)

    Article  CAS  Google Scholar 

  54. A. Zukal, J. Jagiello, J. Mayerova, J. Cejka, Phys. Chem. Chem. Phys. 13, 15468 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A partial grant-in-aid for this study was provided by the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) via Grant # 20123010100010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Hyeon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.H., Cho, I.H., Park, J.H. et al. Adsorption of CO2 and CO on H-zeolites with different framework topologies and chemical compositions and a correlation to probing protonic sites using NH3 adsorption. J Porous Mater 23, 291–299 (2016). https://doi.org/10.1007/s10934-015-0081-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0081-z

Keywords

Navigation