Skip to main content
Log in

Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mercury intrusion porosimetry (MIP) has been widely used to investigate the pore structure of cement based materials for many years. The purpose of this paper is to present views of how to make MIP results of similar materials from different research institutes compatible and how to use MIP results in modeling. Factors that influence MIP results are analyzed comprehensively considering characteristics of cement based materials, and recommendations corresponding to these factors are illustrated. According to these recommendations, when specific tests are unavailable, mercury surface tension of 480 mM/m and mercury-solid contact angle of 130° may be used in theoretical calculations of pore size; sampling by either sawing or core-drilling, maximum value of the minimum sample dimension of 5 mm, and solvent drying are recommended for sample preparation; and staged operation mode which set appropriate equilibrium time is recommended for MIP measurements of cement based materials. From a MIP result, the methods which are necessary to be unified to determine pore structure parameters are discussed. Besides, it is shown that sometimes pore structure parameters should be used carefully in physical models by considering their physical or statistical meanings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Gallé, Cem. Concr. Res. 31, 1467 (2011)

    Article  Google Scholar 

  2. D.N. Winslow, S. Diamond, J. Mater. 5, 564 (1970)

    Google Scholar 

  3. R.A. Cook, K.C. Hover, Cem. Concr. Res. 29, 933 (1999)

    Article  CAS  Google Scholar 

  4. S. Diamond, Cem. Concr. Res. 30, 1517 (2000)

    Article  CAS  Google Scholar 

  5. X. Chen, S. Wu, Constr. Build. Mater. 38, 804 (2013)

    Article  Google Scholar 

  6. Y. Ma, J. Hu, G. Ye, Fuel 104, 771 (2013)

    Article  CAS  Google Scholar 

  7. Q. Zeng, K. Li, T. Fen-chong, P. Dangla, Cem. Concr. Res. 42, 194 (2012)

    Article  CAS  Google Scholar 

  8. J. Zhou, G. Ye, K. van Breugel, Cem. Concr. Res. 40, 1120 (2010)

    Article  CAS  Google Scholar 

  9. C. Felipe, S. Cordero, I. Kornhauser, G. Zgrablich, R. López, F. Rojas, Part. Part. Syst. Charact. 23, 48 (2006)

    Article  CAS  Google Scholar 

  10. S.P. Rigby, I.O. Evbuomwan, M.J. Watt-Smith, K. Edler, R.S. Fletcher, Part. Part. Syst. Charact. 23, 82 (2006)

    Article  CAS  Google Scholar 

  11. F. Porcheron, P.A. Monson, M. Thommes, Langmuir 20, 6482 (2004)

    Article  CAS  Google Scholar 

  12. F. Porcheron, M. Thommes, R. Ahmad, P.A. Monson, Langmuir 23, 3372 (2007)

    Article  CAS  Google Scholar 

  13. H. Giesche, in Handbook of Porous Solids, vol. 1, ed. by F. Schüth, K.S. Sing, J. Weitkarnp (Wiley-VCH, Weinheirn, 2002), p. 309

    Chapter  Google Scholar 

  14. H. Giesche, Part. Part. Syst. Charact. 23, 1 (2006)

    Article  Google Scholar 

  15. ISO 15901-1, Evaluation of Pore Size Distribution and Porosimetry of Solid Materials by Mercury Porosimetry and Gas Adsorption—Part 1: Mercury Porosimetry (International Organization for Standardization, Geneva, 2005), pp. 6–9

    Google Scholar 

  16. J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes et al., Pure Appl. Chem. 84, 107 (2012)

    Article  CAS  Google Scholar 

  17. M.J. Moura, P.J. Ferreira, M.M. Figueiredo, Powder Technol. 160, 161 (2005)

    Article  Google Scholar 

  18. I.U. Bhuiyan, J. Mouzon, S.P.E. Forsmo, J. Hedlund, Powder Technol. 214, 306 (2011)

    Article  CAS  Google Scholar 

  19. S. Wild, Cem. Concr. Res. 31, 1653 (2001)

    Article  CAS  Google Scholar 

  20. G. Ye, Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials, (Ph.D. thesis, Delft University of Technology, 2003)

  21. R. Kumar, B. Bhattacharjee, Cem. Concr. Res. 33, 417 (2003)

    Article  CAS  Google Scholar 

  22. K.K. Aligizaki, Pore structure of Cement-Based Materials: Testing, Interpretation and Requirements (Taylor & Francis, London, 2006)

    Google Scholar 

  23. H. Ma, Z. Li, Comput. Concr. 11, 317 (2013)

    Article  Google Scholar 

  24. M. Frías, S. Goñi, Compos. Part B 48, 122 (2013)

    Article  Google Scholar 

  25. A.J. Katz, A.H. Thompson, Phys. Rev. B 34, 8179 (1986)

    Article  CAS  Google Scholar 

  26. A.J. Katz, A.H. Thompson, J. Geophys. Res. 92, 599 (1987)

    Article  Google Scholar 

  27. A.J. Katz, A.H. Thompson, Adv. Phys. 36, 625 (1987)

    Article  Google Scholar 

  28. E.J. Garboczi, Cem. Concr. Res. 20, 591–601 (1990)

    Article  CAS  Google Scholar 

  29. B.J. Christensen, T.O. Mason, H.M. Jennings, Cem. Concr. Res. 26, 1325 (1996)

    Article  CAS  Google Scholar 

  30. A.S. El-Dieb, R.D. Hooton, Cem. Concr. Res. 24, 443 (1994)

    Article  CAS  Google Scholar 

  31. P. Halamickova, R.J. Detwiler, D.P. Bentz, E.J. Garboczi, Cem. Concr. Res. 25, 790 (1995)

    Article  CAS  Google Scholar 

  32. P.J. Tumidajski, B. Lin, Cem. Concr. Res. 28, 643 (1998)

    Article  CAS  Google Scholar 

  33. M.R. Nokken, R.D. Hooton, Mater. Struct. 41, 1 (2008)

    Article  CAS  Google Scholar 

  34. R.A. Cook, K.C. Hover, Cem. Concr. Res. 21, 1165 (1991)

    Article  CAS  Google Scholar 

  35. C.A.L.Y. León, Adv. Colloid Interface Sci. 77, 341 (1998)

    Article  Google Scholar 

  36. F. Moro, H. Böhni, J. Colloid Interface Sci. 246, 135 (2002)

    Article  CAS  Google Scholar 

  37. J. Kaufmann, R. Loser, A. Leemann, J. Colloid Interface Sci. 336, 730 (2009)

    Article  CAS  Google Scholar 

  38. P. Webb, C. Orr, Micromeritics Instrument Corporation, Analytical methods in fine particle technology (Micromeritics Instrument Corporation, Norcross, 1997)

    Google Scholar 

  39. J. Zhang, Microstructure study of cementitious materials using resistivity measurement (Ph.D. thesis, The Hong Kong University of Science and Technology, 2008)

  40. S. Lowell, Powder Technol. 25, 37 (1980)

    Article  CAS  Google Scholar 

  41. S. Lowell, J.E. Shields, J. Colloid Interface Sci. 80, 192 (1981)

    Article  CAS  Google Scholar 

  42. Z. Liu, D. Winslow, Cem. Concr. Res. 25, 769 (1995)

    Article  CAS  Google Scholar 

  43. N. Hearn, R.D. Hooton, Cem. Concr. Res. 22, 970 (1992)

    Article  CAS  Google Scholar 

  44. A. Korpa, R. Trettin, Cem. Concr. Res. 36, 634 (2006)

    Article  CAS  Google Scholar 

  45. M. Moukwa, P.-C. Aïtcin, Cem. Concr. Res. 18, 745 (1988)

    Article  CAS  Google Scholar 

  46. L. Konecny, S.J. Naqvi, Cem. Concr. Res. 23, 1223 (1993)

    Article  CAS  Google Scholar 

  47. S. Mindess, D. Darwin, J.F. Young, Concrete, 2nd edn. (Prentice Hall, Upper Saddle River, 2003)

    Google Scholar 

  48. P. Pipilikaki, M. Beazi-Katsioti, Constr. Build. Mater. 23, 1966 (2009)

    Article  Google Scholar 

  49. A.M. Neville, Properties of concrete, 4th edn. (Wiley, New York, 1996)

    Google Scholar 

  50. D.P. Bentz, J. Am. Ceram. Soc. 80, 3 (1997)

    Article  CAS  Google Scholar 

  51. E.J. Garboczi, D.P. Bentz, Adv. Cem. Based Mater. 8, 77 (1998)

    Article  CAS  Google Scholar 

  52. D.N. Winslow, M.D. Cohen, D.P. Bentz, K.A. Snyder, E.J. Garboczi, Cem. Concr. Res. 24, 25 (1994)

    Article  CAS  Google Scholar 

  53. J.D. Shane, T.O. Mason, H.M. Jennings, E.J. Garboczi, D.P. Bentz, J. Am. Ceram. Soc. 83, 1137 (2000)

    Article  CAS  Google Scholar 

  54. L. Cui, J.H. Cahyadi, Cem. Concr. Res. 31, 277 (2001)

    Article  CAS  Google Scholar 

  55. H. Song, S. Pack, S. Nam, J. Jang, V. Saraswathy, Constr. Build. Mater. 24, 315 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from China Basic Research Grant (973) under Basic Research on Environmentally Friendly Contemporary Concrete (2009CB623200) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application. J Porous Mater 21, 207–215 (2014). https://doi.org/10.1007/s10934-013-9765-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9765-4

Keywords

Navigation