Skip to main content
Log in

Effect of carbonization atmosphere on the structure changes of PAN carbon membranes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

PAN carbon membranes were prepared by carbonizing the initial PAN membranes in vacuum and Ar at different temperatures. FTIR, Raman and XRD were applied to study the influence of carbonization atmosphere on the structure changes of PAN carbon membranes. The variations in adsorption peaks of FTIR, the intensity, position and FWHM of the Raman peaks, and microcrystallite parameters from XRD (e.g., d002, Lc and La) are correlated with the structure change of PAN carbon membranes. Analyses results reveal that vacuum atmosphere can produce PAN carbon membranes with higher order degree than those in Ar atmosphere, although the structures of PAN carbon membranes prepared in the two atmospheres are both amorphous. In addition, vacuum atmosphere can significantly accelerate the degradation reaction of PAN membranes and favors the preparation of carbon membranes with smaller pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Schindler, F. Maier, U.S. Patent 4919860 (1990)

  2. W. Wei, H. Hu, L. You, G. Chen, Carbon 40, 465 (2002)

    Article  CAS  Google Scholar 

  3. C.W. Jones, W.J. Koros, Carbon 32, 1419 (1994)

    Article  CAS  Google Scholar 

  4. M.G. Sedigh, W.J. Onstot, L. Xu, W.L. Peng, T.T. Tsotsis, M. Sahimi, J. Phys. Chem. A 102, 8580 (1998)

    Article  CAS  Google Scholar 

  5. C.H. Liang, G.Y. Sha, S.C. Guo, Carbon 37, 1391 (1999)

    Article  CAS  Google Scholar 

  6. D.Q. Vu, W.J. Koros, S.J. Miller, Ind. Eng. Chem. Res. 41, 367 (2002)

    Article  CAS  Google Scholar 

  7. J. Petersen, M. Matsuda, K. Haraya, J. Membr. Sci. 131, 85 (1997)

    Article  CAS  Google Scholar 

  8. H. Hatori, M. Shiraishi, H. Nakata, S. Yoshitomi, Carbon 30, 719 (1992)

    Article  Google Scholar 

  9. A.B. Fuertes, T.A. Centeno, Micropor. Mesopor. Mater. 26, 23 (1998)

    Article  CAS  Google Scholar 

  10. M.B. Coutinho, V.M.M. Salim, C.P. Borgees, Carbon 41, 1707 (2003)

    Article  Google Scholar 

  11. M. Yamamoto, K. Kusakabe, J. Hayashi, S. Morooka, J. Membr. Sci. 133, 195 (1997)

    Article  CAS  Google Scholar 

  12. H. Yoneyama, Y. Nishihara, E.P. 0394449 (1990)

  13. V.M. Linkov, R.D. Sanderson, E.P. Jacobs, J. Membr. Sci. 95, 93 (1994)

    Article  CAS  Google Scholar 

  14. L.I.B. David, A.F. Ismail, J. Membr. Sci. 213, 258 (2003)

    Article  Google Scholar 

  15. T.A. Centeno, A.B. Fuertes, Sep. Purif. Tech. 25, 379 (2001)

    Article  CAS  Google Scholar 

  16. T.A. Centeno, A.B. Fuertes, J. Membr. Sci. 160, 201 (1999)

    Article  CAS  Google Scholar 

  17. I. Menendez, A.B. Fuertes, Carbon 39, 733 (2001)

  18. A.B. Fuertes, Carbon 39, 697 (2001)

    Article  CAS  Google Scholar 

  19. A.B. Fuertes, J. Membr. Sci. 177, 9 (2000)

    Article  CAS  Google Scholar 

  20. T.A. Centeno A.B. Fuertes, Carbon 38, 1067 (2000)

    Article  Google Scholar 

  21. M. Acharya, B.A. Raich, H.C. Foley, M.P. Harold, J.J. Lerou, Ind. Eng. Chem. Res. 36, 2924 (1997)

    Article  CAS  Google Scholar 

  22. M. Acharya, H.C. Foley, J. Membr. Sci. 161, 1 (1999)

    Article  CAS  Google Scholar 

  23. M.B. Shiflett, H.C. Foley, Science 285, 1902 (1999)

    Article  CAS  Google Scholar 

  24. M.B. Shiflett, H.C. Foley, J. Membr. Sci. 179, 275 (2000)

    Article  CAS  Google Scholar 

  25. M.S. Strano, H.C. Foley, AIChE J. 47, 66 (2001)

    Article  CAS  Google Scholar 

  26. H. Wang, L. Zhang, G.R. Gavalas, J. Membr. Sci. 177, 25 (2000)

    Article  Google Scholar 

  27. I.C. Lewis, Carbon 20, 519 (1982)

    Article  CAS  Google Scholar 

  28. B. Dichens, J.Polym. Sci. Polym. Chem. 20, 1065 (1982)

    Google Scholar 

  29. B. Dichens, J.Polym. Sci. Polym. Chem. 20, 1169 (1982)

    Google Scholar 

  30. V.C. Geiszler, W.J. Koros, Ind. Eng. Chem. Res. 35, 2999 (1996)

    Article  CAS  Google Scholar 

  31. H. Suda, K. Haraya, J. Phys. Chem. B 101, 3988 (1997)

    Article  CAS  Google Scholar 

  32. T.A. Centeno, J.L. Vilas, A.B. Fuertes, J. Membr. Sci. 228, 45 (2004)

    Article  CAS  Google Scholar 

  33. F. Tuinstar, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  Google Scholar 

  34. Y. Wang, S. Serrano, S.J.J. Santiago-Aviles, Synthetic Metals 138, 423 (2003)

    Article  CAS  Google Scholar 

  35. T.J. Xue, M.A. Mckinney, C.A. Wilkie, Polym. Deg. Stab. 58, 193 (1997)

    Article  CAS  Google Scholar 

  36. M.M. Coleman, R.J. Petcavich, J. Poly. Sci. 16, 821 (1978)

    CAS  Google Scholar 

  37. G. Katagiri, H. Ishida, A. Ishitani, Carbon 26, 565 (1988)

    Article  CAS  Google Scholar 

  38. D. Cottinet, P. Couderc, J.L. SaintRomain, Carbon 26, 339 (1988)

    Article  CAS  Google Scholar 

  39. L. Nikiel, P.W. Jagodzinski, Carbon 31, 1313 (1993)

    Article  CAS  Google Scholar 

  40. D. Sawai, M. Miyamoto, T. Kanamoto, M. Ito, J. Polym. Sci. Polym. Phys. 38, 2571 (2000)

    Article  CAS  Google Scholar 

  41. A.K. Kercher, D.C. Nagle, Carbon 41, 15 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Natural Science Foundation of China (20276008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwen Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Wang, T., Qiu, Y. et al. Effect of carbonization atmosphere on the structure changes of PAN carbon membranes. J Porous Mater 16, 197–203 (2009). https://doi.org/10.1007/s10934-008-9185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9185-z

Keywords

Navigation