Skip to main content

Advertisement

Log in

Development of characterisation methodologies for macroporous materials

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The exceptional property sets of macroporous materials are leading to an increasing number of applications, particularly in the biomedical sector. Apart from the underlying material properties, it is the characteristics of the porous structure that dictate the properties of fabricated devices. Conventional methods of examining the pore structure have a number of inherent disadvantages such as low sampling volume, laborious and frequently destructive sample preparation, tedious and subjective image analysis. Recently, industrial microtomographic methods have become important tools for interrogating porous materials. However, one of the limitations of micro-CT methods is the non-specific nature of commercially available image analysis software coupled with the complicated nature of the key parameters. This paper presents some progress towards the development of a novel analysis tool that aims to characterise specific parameters over a wide range of macroporous materials. This paper focuses on aspects directly relevant to the characterisation of Hydroxyapatite macroporous (HA) foams and demonstrates the capability to obtain statistically meaningful parameters essential for process development and pre-implantation quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.R. Shanley, Weight-Strength Analysis of Aircraft Structures (Dover, New York, 1960).

    Google Scholar 

  2. B. Budiansky, Int. J. Solids Struct. 36(24), 3677 (1999).

    Article  Google Scholar 

  3. M.F. Ashby, A.G. Evans, and J.W. Hutchinson, Cellular Metals—A Design Guide (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  4. T.J. Lu, H.A. Stone, and A.G. Evans, Acta Mater. 46, 3619 (1998).

    Article  CAS  Google Scholar 

  5. W. Suchanek and M. Yoshimura, J. Mater. Res. 13, 94 (1998).

    Article  CAS  Google Scholar 

  6. K. De Groot, Biomaterials 1(1), 47 (1980).

    Article  Google Scholar 

  7. M. Jarcho, Clin. Orthop. Rel. Res. 157, 259 (1981).

    CAS  Google Scholar 

  8. C.J. Damien and J.R. Parsons, J. Appl. Biomater. 2(3), 187 (1990).

    Article  Google Scholar 

  9. E.W. White and E.C. Shors, Dent. Clin. N. Am. 30, 49 (1986).

    CAS  Google Scholar 

  10. H. Ohgushi, K. Okumura, T. Yoshikawa, K. Inoue, N. Senpuku, S. Tamai, and E.C. Shors, J. Biomed. Mater. Res. 26, 885 (1992).

    Article  CAS  Google Scholar 

  11. D.M. Liu, Biomaterials 17(20), 1955 (1996).

    Article  CAS  Google Scholar 

  12. N. Ozgur Engin and A.C. Tas, J. Eur. Ceram. Soc. 19(13, 14), 2569 (1999).

    Article  Google Scholar 

  13. I.P. Se, Y. Wang, and J.M. Toguri, Can. Metal Quart. 38(1), 81 (1999).

    Article  Google Scholar 

  14. M.J. Moore, E. Jabbari, E.L. Ritman, L. Lu, B.L. Currier, A.J. Windebank, and M.J. Yaszemski, J. Biomed. Mater. Res. 71A(2), 258 (2004).

    Article  CAS  Google Scholar 

  15. A.S. Lin, T.H. Barrows, S.H. Cartmell, and R.E. Guldberg, Biomaterials 24(3), 481 (2003).

    Article  CAS  Google Scholar 

  16. J.M. Taboas, R.D. Maddox, P.H. Krebsbach, and S.J. Hollister, Biomaterials 24(1), 181 (2003).

    Article  CAS  Google Scholar 

  17. R. Filmon, N. Retailleau-Gaborit, F. Grizon, M. Galloyer, C. Cincu, M.F. Basle, and D. Chappard, J. Biomater. Sci. Poly. Ed. 13(10), 1105 (2003).

    Article  Google Scholar 

  18. J.X. Lu, B. Flautre, K. Aselme, P. Hardouin, A. Gallur, B. Descamps, and B. Thierry, J. Mat. Sci. Mater. Med. 10(2), 111 (1999).

    Article  CAS  Google Scholar 

  19. J.C. Le Huec, T. Schaeverbeke, D. Clement, J. Faber, and A. Le. Rebeller, Biomaterials 16(2), 113 (1995).

    Article  Google Scholar 

  20. J.J. Kalwiter, J.G. Bagwell, A.M. Weinstein, B.W. Sauer, and J.R. Pruitt, J. Biomed. Mater. Res. 10, 311 (1976).

    Article  Google Scholar 

  21. G. Daculsi and N. Passuti, Biomaterials 11, 86 (1991).

    Google Scholar 

  22. B.D. Boyan, T.W. Hummert, D.D. Dean, and Z. Schwartz, Biomaterials 17(2), 137 (1996).

    Article  CAS  Google Scholar 

  23. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D. Ramsay, K.S.W. Sing, and K.K. Unger, Pure Appl. Chem. 66(8), 1739 (1994).

    Article  CAS  Google Scholar 

  24. A.C. Spowage, A.P. Shacklock, A.A. Malcolm, L.M. Sim, T. Liu, and A.R. Kennedy, Proc. 4th World Congress on Industrial Process Tomography (Aizu, Japan, 2005), p. 226.

    Google Scholar 

  25. K. Zoghlami and D. Gomez-Gras, Microsc. Res. Tech. 65(6), 270 (2004).

    Article  CAS  Google Scholar 

  26. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, and Y. Kuboki, J. Biochem. 121, 317 (1997).

    CAS  Google Scholar 

  27. A.G. Evans, J.W. Hutchinson, and M.F. Ashby, Prog. Mater. Sci. 43, 171 (1999).

    Article  Google Scholar 

  28. H. Bart-Smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, and H.N.G. Wadley, Acta Mater. 46, 3583 (1998).

    Article  CAS  Google Scholar 

  29. K. Anselme, M. Bigerelle, E. Dufresne, D. Judas, and P. Hardouin, J. Biomed. Mater. Res. 49, 155 (2000).

    Article  CAS  Google Scholar 

  30. K. Anselme, Biomaterials 21(7), 667 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Spowage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spowage, A.C., Shacklock, A.P., Malcolm, A.A. et al. Development of characterisation methodologies for macroporous materials. J Porous Mater 13, 431–438 (2006). https://doi.org/10.1007/s10934-006-8042-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-8042-1

Keywords

Navigation