Skip to main content
Log in

Trypsin immobilization on mesoporous silica with or without thiol functionalization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The effects of pore size, structure, and surface functionalization of mesoporous silica on the catalytic activity of the supported enzyme, trypsin, were investigated. For this purpose, SBA-15 with 1-dimensional pore arrangement and cubic Ia3d mesoporous silica with 3-dimensional pores were prepared and tested as a support. Materials with varying pore diameters in the range 5–10 nm were synthesized using a non-ionic block copolymer by controlling the synthesis temperature. Thiol-group was introduced to the porous materials via siloxypropane tethering either by post synthesis grafting or by direct synthesis. These materials were characterized using XRD, SEM, TEM, N2 adsorption, and elemental analysis. Trypsin-supported on the solids prepared was active and stable for hydrolysis of N-α-benzoyl-DL-arginine-4-nitroanilide (BAPNA). Without applying thiol-functionalization, cubic Ia3d mesoporous silica with ca. 5.4 nm average pore diameter was found to be superior to SBA-15 for trypsin immobilization and showed a better catalytic performance. However, enzyme immobilized on the 5% thiol-functionalized SBA-15 prepared by directly synthesis was found to be the most promising and was also found recyclable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  3. Y.J. Han, J.T. Watson, G.D. Stucky, and A. Butler, J. Mol. Catal. B:Enzymatic 17, 1 (2002)

    Article  CAS  Google Scholar 

  4. M. Huckel, H.J. Wirth, and M.T. W. Hearn, J. Biochem. Biophys. Methods 31, 165 (1996)

    Article  CAS  Google Scholar 

  5. Z. Yang, A. Mesiano, S. Venkatasubramanian, S.H. Gross, J.M. Harris, and A.J. Russell, J. Am. Chem. Soc. 117, 4843 (1995)

    Article  CAS  Google Scholar 

  6. B.C. Dave, B. Dunn, and J.S. Valentine, J. I. Zink, Anal. Chem. 66, 1120 (1994)

    Article  Google Scholar 

  7. A.M. Kibanov, Science 219, 722 (1983)

    Article  Google Scholar 

  8. A. Corma, Q.B. Kan, M.T. Navarro, J. Perez-Pariente, and F. Rey, Chem. Mater. 9, 2499 (1997)

    Article  Google Scholar 

  9. S. Inagaki, Y. Fukushima, and K. Kuroda, Chem. Commun. 680 (1993)

  10. H.P. Yiu, P.A. Wright, and N.P. Botting, Micropor. Mesopor. Mater. 44–45, 763 (2001)

    Article  Google Scholar 

  11. S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi, and S. Braun, Biotech. Appl. Biochem. 15, 227 (1992)

    CAS  Google Scholar 

  12. H.P. Yiu, P.A. Wright, and N.P. Botting, J. Mol. Catal. B:Enzymatic 15, 81 (2001)

    Article  CAS  Google Scholar 

  13. J.F. Diaz, K.J. Balkus, and J. Mol. Catal. B:Enzymatic 2, 115 (1996)

    Article  CAS  Google Scholar 

  14. R.B. Bhatia, C.J. Brinker, A.K. Gupta, and A.K. Singh, Chem. Mater. 12, 2434 (2000)

    Article  CAS  Google Scholar 

  15. C.H. Lei, Y. S. Shin, J. Liu, and E.J. Ackeman, J. Am. Chem. Soc. 124, 11242 (2002)

    Article  CAS  Google Scholar 

  16. J.M. Kisler, A. Dahler, G.W. Stevens, and A. J. O’Connor, Micropor. Mesopor. Mater. 44–45, 769 (2001)

    Article  Google Scholar 

  17. J.M. Kisler, G.W. Stevens, and A.J.O’Connor, Mater. Phys. Mech. 4, 89 (2001)

    CAS  Google Scholar 

  18. L.W. Kriel, V.L. Jimenez, and K.J. Balkus, J. Mol. Catal. B:Enzymatic 10, 453 (2000)

    Article  Google Scholar 

  19. H. Takahashi, B. Li, T. sasaki, C. Miyazaki, T. Kajino, and S. Inagaki, Micropor. Mesopor. Mater. 44–45, 755 (2001)

    Article  Google Scholar 

  20. J. He, X. Li, D.G. Evans, X. Duan, and C. Li, J. Mol. Catal. B:Enzymatic 11, 45 (2000)

    Article  Google Scholar 

  21. A.S.M. Chong, and X.S. Zhao, Catalysis Today 93–95, 293 (2004)

    Article  Google Scholar 

  22. R. Bilewicz, P. Rowinski, and E. Rogalska, Bioelectrochemistry 66, 3 (2005)

    Article  CAS  Google Scholar 

  23. F. Kleitz, S.H. Choi, and R. Ryoo, Chem. Commun. 2136 (2003)

  24. S. Che, A.E. Garcia-Bennett, X. Liu, R.P. Hodgkins, P.A. Wright, D. Zhao, O. Terasaki, and T. Tatsumi, Angew. Chem. 115, 4060 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Whaseung Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, S., Kim, D., Choi, J. et al. Trypsin immobilization on mesoporous silica with or without thiol functionalization. J Porous Mater 13, 385–391 (2006). https://doi.org/10.1007/s10934-006-8035-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-8035-0

Keywords

Navigation