Skip to main content

Advertisement

Log in

A Synergistic Combination Against Chronic Myeloid Leukemia: An Intra-molecular Mechanism of Communication in BCR–ABL1 Resistance

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The constitutive BCR–ABL1 active protein fusion has been identified as the main cause of chronic myeloid leukemia. The emergence of T334I and D381N point mutations in BCR–ABL1 confer drug resistance. Recent experimental studies show a synergistic effect in suppressing this resistance when Nilotinib and Asciminib are co-administered to target both the catalytic and allosteric binding site of BCR–ABL1 oncoprotein, respectively. However, the structural mechanism by which this synergistic effect occurs has not been clearly elucidated. To obtain insight into the observed synergistic effect, molecular dynamics simulations have been employed to investigate the inhibitory mechanism as well as the structural dynamics that characterize this effect. Structural dynamic analyses indicate that the synergistic binding effect results in a more compact and stable protein conformation. In addition, binding free energy calculation suggests a dominant energy effect of nilotinib during co-administration. van der Waals energy interactions were observed to be the main energy component driving this synergistic effect. Furthermore, per-residue energy decomposition analysis identified Glu481, Ser453, Ala452, Tyr454, Phe401, Asp400, Met337, Phe336, Ile334, And Val275 as key residues that contribute largely to the synergistic effect. The findings highlighted in this study provide a molecular understanding of the dynamics and mechanisms that mediate the synergistic inhibition in BCR–ABL1 protein in chronic myeloid leukemia treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Apperley JF (2015) Chronic myeloid leukaemia. Lancet 385:1447–1459. https://doi.org/10.1016/S0140-6736(13)62120-0

    Article  PubMed  Google Scholar 

  2. Druker BJ (2001) Current treatment approaches for chronic myelogenous leukemia. Cancer J 7(Suppl 1):S14–S18

    PubMed  Google Scholar 

  3. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290

    Article  CAS  PubMed  Google Scholar 

  4. Ren R (2005) Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5:172

    Article  CAS  PubMed  Google Scholar 

  5. Pendergast AM, Quilliam LA, Cripe LD et al (1993) BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Neriah Y, Daley GQ, Mes-Masson AM et al (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233:212–214

    Article  CAS  PubMed  Google Scholar 

  7. Jabbour E, Kantarjian H (2018) Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol 93:442–459

    Article  PubMed  Google Scholar 

  8. Granatowicz A, Piatek CI, Moschiano E et al (2015) An overview and update of chronic myeloid leukemia for primary care physicians. Korean J Fam Med 36:197–202

    Article  PubMed  PubMed Central  Google Scholar 

  9. Panjarian S, Iacob RE, Chen S et al (2013) Structure and dynamic regulation of Abl kinases. J Biol Chem 288:5443–5450. https://doi.org/10.1074/jbc.R112.438382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huse M, Kuriyan J (2002) The Conformational Plasticity of Protein Kinases. Cell 109:275–282. https://doi.org/10.1016/S0092-8674(02)00741-9

    Article  CAS  PubMed  Google Scholar 

  11. Nagar B, Bornmann WG, Pellicena P et al (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62:4236–4243

    CAS  PubMed  Google Scholar 

  12. Schindler T, Bornmann W, Pellicena P et al (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39. https://doi.org/10.1038/nrc2559

    Article  CAS  PubMed  Google Scholar 

  14. Nagar B (2007) c-Abl tyrosine kinase and inhibition by the cancer drug imatinib (Gleevec/STI-571). J Nutr 137:1518S–1523S. (discussion 1548S)

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Cortes J, Kantarjian H (2012) Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer 118:3123–3127. https://doi.org/10.1002/cncr.26679

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fava C, Morotti A, Dogliotti I et al (2015) Update on emerging treatments for chronic myeloid leukemia. Expert Opin Emerg Drugs 20:183–196

    Article  CAS  PubMed  Google Scholar 

  17. Miura M (2015) Therapeutic drug monitoring of imatinib, nilotinib, and dasatinib for patients with chronic myeloid leukemia. Biol Pharm Bull 38:645–654

    Article  CAS  PubMed  Google Scholar 

  18. Roskoski R Jr (2016) Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 103:26–48

    Article  CAS  PubMed  Google Scholar 

  19. Shah NP, Nicoll JM, Nagar B et al (2002) Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125

    Article  CAS  PubMed  Google Scholar 

  20. Schoepfer J, Jahnke W, Berellini G et al (2018) Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR–ABL1. J Med Chem 61:8120–8135. https://doi.org/10.1021/acs.jmedchem.8b01040

    Article  CAS  PubMed  Google Scholar 

  21. Wylie AA, Schoepfer J, Jahnke W et al (2017) The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature 543:733–737. https://doi.org/10.1038/nature21702

    Article  CAS  PubMed  Google Scholar 

  22. Wylie A, Schoepfer J, Berellini G et al (2014) ABL001, a potent allosteric inhibitor of BCR–ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Blood 124:398–398

    Google Scholar 

  23. Eadie LN, Saunders VA, Leclercq TM et al (2015) The allosteric inhibitor ABL001 is susceptible to resistance in vitro mediated by overexpression of the drug efflux transporters ABCB1 and ABCG2. Blood 126:4841–4841

    Google Scholar 

  24. Ottmann OG, Alimena G, DeAngelo DJ et al (2015) ABL001, a potent, allosteric inhibitor of BCR–ABL, exhibits safety and promising single- agent activity in a phase I study of patients with CML with failure of prior TKI therapy. Blood 126:138–138

    Google Scholar 

  25. Hughes TP, Goh Y-T, Ottmann OG et al (2016) Expanded phase 1 Study of ABL001, a potent, allosteric inhibitor of BCR–ABL, reveals significant and durable responses in patients with CML-chronic phase with failure of prior TKI therapy. Blood 128:625–625

    Article  CAS  Google Scholar 

  26. Druker BJ, Sawyers CL, Kantarjian H et al (2001) Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the philadelphia chromosome. N Engl J Med 344:1038–1042. https://doi.org/10.1056/NEJM200104053441402

    Article  CAS  PubMed  Google Scholar 

  27. Hassan AQ, Sharma SV, Warmuth M (2010) Allosteric inhibition of BCR–ABL. Cell Cycle 9:3734–3738. https://doi.org/10.4161/cc.9.18.13232

    Article  CAS  Google Scholar 

  28. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Protein Struct Predict 47:1–15

    Google Scholar 

  29. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  30. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615. https://doi.org/10.1021/cr040426m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burger SK, Schofield J, Ayers PW (2013) Quantum mechanics/molecular mechanics restrained electrostatic potential fitting. J Phys Chem B 117:14960–14966

    Article  CAS  PubMed  Google Scholar 

  33. Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895

    Article  CAS  PubMed  Google Scholar 

  34. Shao Y, Molnar LF, Jung Y et al (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191

    Article  CAS  PubMed  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  36. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9:3084–3095

    Article  CAS  PubMed  Google Scholar 

  37. Seifert E (2014) OriginPro 9.1: Scientific data analysis and graphing software—Software review. J Chem Inf Model 54:1552–1552. https://doi.org/10.1021/ci500161d

    Article  CAS  PubMed  Google Scholar 

  38. Ylilauri M, Pentikäinen OT (2013) MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J Chem Inf Model 53:2626–2633. https://doi.org/10.1021/ci4002475

    Article  CAS  PubMed  Google Scholar 

  39. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  40. Hayes JM, Archontis G (2011) MM-GB (PB) SA calculations of protein-ligand binding free energies. InTech. https://doi.org/10.5772/37107

    Article  Google Scholar 

  41. Pan L, Patterson JC, Deshpande A et al (2013) Molecular dynamics study of Zn(Aβ) and Zn(Aβ)2. PLoS ONE 8:70681–70688. https://doi.org/10.1371/journal.pone.0070681

    Article  CAS  Google Scholar 

  42. Wijffels G, Dalrymple B, Kongsuwan K, Dixon N (2005) Conservation of eubacterial replicases. IUBMB Life 57:413–419. https://doi.org/10.1080/15216540500138246

    Article  CAS  PubMed  Google Scholar 

  43. Richmond TJ (1984) Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. J Mol Biol 178:63–89

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the College of Health Science, the University of KwaZulu-Natal for financial support and Centre of High-Performance Computing (CHPC) Cape Town, RSA, for computational resources (http://www.chpc.ac.za).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Rashedy, A.A., Appiah-Kubi, P. & Soliman, M.E.S. A Synergistic Combination Against Chronic Myeloid Leukemia: An Intra-molecular Mechanism of Communication in BCR–ABL1 Resistance. Protein J 38, 142–150 (2019). https://doi.org/10.1007/s10930-019-09820-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09820-z

Keywords

Navigation