Skip to main content
Log in

Heterologous Expression, Purification and Characterization of a Peroxidase Isolated from Lepidium draba

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Peroxidase is one of the most widely used enzymes in biotechnology and medicine. In the current study, cDNA encoding peroxidase from Lepidium draba (LDP) was cloned and expressed in Escherichia coli BL21 (DE3) cells in the form of inclusion bodies (IBs). To achieve purified active enzyme, IBs were solubilized before being purified and refolded. The deduced amino acid sequence (308) of the LDP gene (924 bp) revealed 88.96% identity to horseradish peroxidase C1A (HRP C1A). The results of basic local alignment search tool (BLAST) and phylogenetic analysis of the protein sequence showed that this enzyme belongs to the neutral group of class III plant peroxidases. According to sequence analysis and structural modeling, critical amino acids in heme and calcium binding domain as well as cysteine residues were conserved as HRP C1A except for calcium binding domain where valine228 was replaced with isoleucine. The far-UV circular dichroism (CD) results were confirmed by homology modeling data showing the enzyme consists mainly of α-helices as other plant peroxidases. Overall, according to the results of catalytic activity and refolding yield, LDP can be introduced as a novel peroxidase for medical and biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

DTT:

Dithiotheritol

HRP:

Horseradish peroxidase

IBs:

Inclusion bodies

LDP:

Lepidium draba peroxidase

K m :

Michaelis–Menten constant

PCR:

Polymerase chain reaction

RZ :

Reinheitzahl

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TMB:

3,3′,5,5′-tetramethylbenzidine

V max :

Maximum velocity

References

  1. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42(5):462–468

    Article  CAS  Google Scholar 

  2. Kawatsu K, Hamano Y, Sugiyama A, Hashizume K, Noguchi T (2002) Development and application of an enzyme immunoassay based on a monoclonal antibody against gonyautoxin components of paralytic shellfish poisoning toxins. J Food Prot 65(8):1304–1308

    Article  CAS  Google Scholar 

  3. Micheli L, Di Stefano S, Moscone D, Palleschi G, Marini S, Coletta M, Draisci R, Delli Quadri F (2002) Production of antibodies and development of highly sensitive formats of enzyme immunoassay for saxitoxin analysis. Anal Bioanal Chem 373(8):678–684

    Article  CAS  Google Scholar 

  4. Gündoğan-Paul M, Çelebi SS, Özyörük H, Yıldız A (2002) Amperometric enzyme electrode for organic peroxides determination prepared from horseradish peroxidase immobilized in poly (vinylferrocenium) film. Biosens Bioelectron 17(10):875–881

    Article  Google Scholar 

  5. Gaspar S, Habermüller K, Csöregi E, Schuhmann W (2001) Hydrogen peroxide sensitive biosensor based on plant peroxidases entrapped in Os-modified polypyrrole films. Sens Actuators B 72(1):63–68

    Article  CAS  Google Scholar 

  6. Bhunia A, Durani S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol Bioeng 72(5):562–567

    Article  CAS  Google Scholar 

  7. Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36(16):4041–4052

    Article  CAS  Google Scholar 

  8. Kalaiarasan E, Palvannan T (2014) Removal of phenols from acidic environment by horseradish peroxidase (HRP): aqueous thermostabilization of HRP by polysaccharide additives. J Taiwan Inst Chem Eng 45(2):625–634

    Article  CAS  Google Scholar 

  9. Tatsumi K, Wada S, Ichikawa H (1996) Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnol Bioeng 51(1):126–130

    Article  CAS  Google Scholar 

  10. Adam W, Lazarus M, Hoch U, Korb MN, Saha-Möller CR, Schreier P (1998) Horseradish peroxidase-catalyzed enantioselective reduction of racemic hydroperoxy homoallylic alcohols: a novel enzymatic method for the preparation of optically active, unsaturated diols and hydroperoxy alcohols. J Org Chem 63(18):6123–6127

    Article  CAS  Google Scholar 

  11. Hoch U, Adam W, Fell R, Saha-Möller CR, Schreier P (1997) Horseradish peroxidase-a biocatalyst for the one-pot synthesis of enantiomerically pure hydroperoxides and alcohols. J Mol Catal A 117(1):321–328

    Article  CAS  Google Scholar 

  12. Greco O, Folkes LK, Wardman P, Tozer GM, Dachs GU (2000) Development of a novel enzyme/prodrug combination for gene therapy of cancer: horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther 7(11):1414–1420

    Article  CAS  Google Scholar 

  13. Folkes LK, Greco O, Dachs GU, Stratford MR, Wardman P (2002) 5-Fluoroindole-3-acetic acid: a prodrug activated by a peroxidase with potential for use in targeted cancer therapy. Biochem Pharmacol 63(2):265–272

    Article  CAS  Google Scholar 

  14. Dalmazzo LFF, Santana-Lemos BA, Jácomo RH, Garcia AB, Rego EM, da Fonseca LM, Falcão RP (2011) Antibody-targeted horseradish peroxidase associated with indole-3-acetic acid induces apoptosis in vitro in hematological malignancies. Leukemia Res 35(5):657–662

    Article  CAS  Google Scholar 

  15. Kim DS, Jeon SE, Park KC (2004) Oxidation of indole-3-acetic acid by horseradish peroxidase induces apoptosis in G361 human melanoma cells. Cell Signal 16(1):81–88

    Article  CAS  Google Scholar 

  16. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2(3):388–393

    Article  CAS  Google Scholar 

  17. Azevedo AM, Martins VC, Prazeres DMF, Vojinović V, Cabral JMS, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Eev 9:199–247

    Article  CAS  Google Scholar 

  18. Finzel BC, Poulos TL, Kraut J (1984) Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem 259(21):13027–13036

    CAS  Google Scholar 

  19. Poulos TL, Freer S, Alden R, Edwards S, Skogland U, Takio K, Eriksson B, Xuong NH, Yonetani T, Kraut J (1980) The crystal structure of cytochrome c peroxidase. J Biol Chem 255(2):575–580

    CAS  Google Scholar 

  20. Patterson WR, Poulos TL (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochem 34(13):4331–4341

    Article  CAS  Google Scholar 

  21. Poulos T, Edwards S, Wariishi H, Gold M (1993) Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem 268(6):4429–4440

    CAS  Google Scholar 

  22. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 269(52):32759–32767

    CAS  Google Scholar 

  23. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259

    Article  CAS  Google Scholar 

  24. Spadiut O, Herwig C (2013) Production and purification of the multifunctional enzyme horseradish peroxidase. Pharm Bioprocess 1(3):283–295

    Article  Google Scholar 

  25. Smith AT, Santama N, Dacey S, Edwards M, Bray RC, Thorneley RN, Burke JF (1990) Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem 265(22):13335–13343

    CAS  Google Scholar 

  26. Hartmann C, Ortiz de Montellano PR (1992) Baculovirus expression and characterization of catalytically active horseradish peroxidase. Arch Biochem Biophys 297(1):61–72

    Article  CAS  Google Scholar 

  27. Morawski B, Lin Z, Cirino P, Joo H, Bandara G, Arnold FH (2000) Functional expression of horseradish peroxidase in saccharomyces cervisiae and Pichia pastoris. Protein Eng 13(5):377–384

    Article  CAS  Google Scholar 

  28. Mohammadi M, Riahi-Madvar A, Pourseyedi S (2014) Elicitors Induced sulforaphane production in Lepidium draba. Asian J Biomed Pharm Sci 4(35):64–70

    Article  CAS  Google Scholar 

  29. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14(1):1023–1031

    Article  CAS  Google Scholar 

  30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  31. Taylor M, Drickamer K (2011) Introduction to glycobiology, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  32. Gupta R, Jung E, Brunak S (2004) Prediction of N-glycosylation sites in human proteins. http://www.cbs.dtu.dk/services/NetNGlyc/

  33. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 42:252–258

    Article  Google Scholar 

  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  35. Asad S, Dabirmanesh B, Ghaemi N, Etezad SM, Khajeh K (2013) Studies on the refolding process of recombinant horseradish peroxidase. Mol Biotechnol 54(2):484–492

    Article  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  37. Dunford H (1991) Horseradish peroxidase: structure and kinetic properties. Peroxidases Chem Biol 2:1–24

    CAS  Google Scholar 

  38. Krainer FW, Pletzenauer R, Rossetti L, Herwig C, Glieder A, Spadiut O (2114) Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris. Protein Express Purif 95:104–112

    Article  Google Scholar 

  39. Welinder K (1992) Plant peroxidases: structure-function relationships. Plant peroxidases University of Geneva, Geneva, pp 1–24

    Google Scholar 

  40. Buffard D, Breda C, van Huystee RB, Asemota O, Pierre M, Ha DB, Esnault R (1990) Molecular cloning of complementary DNAs encoding two cationic peroxidases from cultivated peanut cells. Proc Natl Acad Sci 87(22):8874–8878

    Article  CAS  Google Scholar 

  41. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  Google Scholar 

  42. Veitch NC, Smith AT (2000) Horseradish peroxidase. Adv Inorg Chem 51:107–162

    Article  Google Scholar 

  43. Howes BD, Feis A, Raimondi L, Indiani C, Smulevich G (2001) The critical role of the proximal calcium ion in the structural properties of horseradish peroxidase. J Biol Chem 276(44):40704–40711

    Article  CAS  Google Scholar 

  44. Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microbial Technol 30(4):425–444

    Article  Google Scholar 

  45. Welinder KG (1985) Plant peroxidases. Eur J Biochem 151(3):497–504

    Article  CAS  Google Scholar 

  46. Eggenreich B, Willim M, Wurm DJ, Herwig C, Spadiut O (2016) Production strategies for active heme-containing peroxidases from E. coli inclusion bodies – a review. Biotechnol Rep 10:75–83

    Article  Google Scholar 

  47. Grigorenko V, Chubar T, Kapeliuch Y, Börchers T, Spener F, Egorova A (1999) New approaches for functional expression of recombinant horseradish peroxidase C in Escherichia coli. Biocatal Biotransform 17(5):359–379

    Article  CAS  Google Scholar 

  48. Gundinger T, Spadiut O (2017) A comparative approach to recombinantly produce the plant enzyme horseradish peroxidase in Escherichia coli. J Biotechnol 248:15–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by Research Council of Jiroft University of Medical Sciences under contract number of p-94-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Riahi-Madvar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahian, Y., Riahi-Madvar, A., Mirzaee, R. et al. Heterologous Expression, Purification and Characterization of a Peroxidase Isolated from Lepidium draba . Protein J 36, 461–471 (2017). https://doi.org/10.1007/s10930-017-9741-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9741-y

Keyword

Navigation