Skip to main content

Advertisement

Log in

A New Bioinformatics Approach to Natural Protein Collections: Permutation Structure Contrasts of Viral and Cellular Systems

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Biological cells and viruses operate by different replication and symmetry paradigms. Cells are able to replicate independently and express little spatial symmetry; viruses require cells for replication while manifesting high symmetry. The author inquired whether different paradigms were reflected in the permutations of amino acid sequences. The hypothesis was that the permutation structure level and symmetry within viral protein collections exceed that of living cells. The rationale was that one symmetry aspect generally accompanies and promotes others in a system. The inquiry was readily answered given abundant sequence archives for proteins. The analysis of collections from diverse viral and cellular sources lends strong support. Additional insights into protein primary structure, the design of collections, and the role of information are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NCBI:

National Center for Biotechnology Information

BLAST:

Basic Local Alignment Search Tool

UniProt:

Universal Protein Resources

References

  1. Chang G, Wang T (2011) Prot J 30:167–172. doi:10.1007/s10930-011-9318-0

    Article  CAS  Google Scholar 

  2. Denbigh K (1966) The Principles of Chemical Equilibrium with Applications in Chemistry and Chemical Engineering, chapter eight. Cambridge University Press, Cambridge

    Google Scholar 

  3. Doolittle RF (1981) Science 1981:149–159. doi:10.1126/science.7280687

    Article  Google Scholar 

  4. Dou Y, Geng X, Gao H, Yang J, Zheng X, Wang J (2011) Prot J 30:229–239. doi:10.1007/s10930011-9324-2

    Article  CAS  Google Scholar 

  5. Fu X, Gharib SA, Green PS, Aitken ML, Frazer DA, Park DR, Vaisar T, Heinecke JW (2008) J Proteome Res 7:845–854

    Article  CAS  Google Scholar 

  6. Glisic S, Veljkovic N, Cupic SJ, Vasiljevic N, Prljic J, Gemovic G, Perovic V, Veljkovic V (2012) Prot J 31:129–136. doi:10.1007/s10930-011-9381-6

    Article  CAS  Google Scholar 

  7. Graham DJ, Greminger JL (2009) Mol Divers doi:10.1007/s11030-009-9211-3

  8. Graham DJ, Greminger JL (2011) Mol Divers doi:10.1007/s11030-011-9307-4

  9. Graham DJ, Magdalinos P, Tosi M (1995) J Phys Chem 99:4757–4762. doi:10.1021/j100013a053

    Article  CAS  Google Scholar 

  10. Graham DJ, May D, Grzetic S, Zumpf J (2012) Prot J 31:550–563. doi:10.1007/s10930-012-9432-7

    Article  CAS  Google Scholar 

  11. Jiang L, Li M, Wen Z, Wang K, Diao Y (2006) Prot J 25:241–249. doi:10.1007/s10930-006-9007-6

    Article  CAS  Google Scholar 

  12. Karlin S, Buche P, Brendel V, Altschul SF (1991) Annu Rev Biophys Biophys Chem 20:175–203

    Article  CAS  Google Scholar 

  13. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  14. Kirkwood JG (1961) Chemical thermodynamics, chapter nine. McGraw-Hill, NY

    Google Scholar 

  15. Kullback S (1997) Information theory and statistics, Chapter 1. Dover, New York

    Google Scholar 

  16. le Noble WJ (1974) Highlights of organic chemistry, chapter twelve. Dekker, New York

    Google Scholar 

  17. Levy JA, Fraenkel-Conrat H, Owens RA (1994) Virology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  18. Liu H, Yang J, Wang M, Xue L, Chou K-C (2005) Prot J 24:385–389. doi:10.1007/s10930-005-7592-4

    Article  CAS  Google Scholar 

  19. Qiu JD, Sun XY, Huang JH, Liang RP (2010) Prot J 29:114–119. doi:10.1007/s10930-010-923-z

    Article  CAS  Google Scholar 

  20. Randić M, Lers N, Vukicevic D, Plavšić D, Gute BD, Basak SC (2005) J Proteome Res 4:1347–1352

    Article  Google Scholar 

  21. Randić M, Zupan J, Balaban AT, Dražen V-T, Plavšić D (2011) Chem Rev 111:790–862. doi:10.1021/cr800198j

    Article  Google Scholar 

  22. Savitski MM, Nielsen ML, Kjeldsen F, Zubareve RA (2005) J Proteome Res 4:2348–2354

    Article  CAS  Google Scholar 

  23. Song JM, Choi CW, Kwon SO, Compans RW, Kang SM, Kim SI (2011) J Proteome Res 10:3450–3459

    Article  CAS  Google Scholar 

  24. Tanford C, Reynolds J (2001) Nature’s robots: a history of proteins. Oxford University Press, Oxford

    Google Scholar 

  25. Tikhonenko AS (1970) Ultrastructure of bacterial viruses. Plenum Press, New York 1970

    Google Scholar 

  26. Wang C, Cheng J, Su S (2009) Prot J 28:111–115. doi:10.1007/s10930-009-9170-7

    Article  CAS  Google Scholar 

  27. Wu CH (ed) (2011) Bioinformatics for comparative proteomics. Humana Press, New York

    Google Scholar 

  28. Yu L, Tan Y, Tsai Y, Goodlett DR, Polfer NC (2011) J Proteome Res 10:2409–2416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professors Miguel Ballicora and Ken Olsen for discussions about individual proteins and proteomes. The assistance and suggestions of Donald May, John Zumpf, Shelby Grztec, and Julius Aguas are equally appreciated. Thanks are also extended to an anonymous reviewer for criticism and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, D.J. A New Bioinformatics Approach to Natural Protein Collections: Permutation Structure Contrasts of Viral and Cellular Systems. Protein J 32, 275–287 (2013). https://doi.org/10.1007/s10930-013-9485-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9485-2

Keywords

Navigation