Skip to main content
Log in

MRP1 Expressed on Burkitt’s Lymphoma Cells was Depleted by Catfish Egg Lectin Through Gb3-Glycosphingolipid and Enhanced Cytotoxic Effect of Drugs

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A novel anticancer mechanism of catfish (Silurus asotus) egg lectin (SAL) was found to occur via the down-regulation of the membrane transopter protein, MRP1 (multidrug resistance associate protein-1) on Burkitt’s lymphoma cells through Gb3(Galα1-4Galβ1-4Glc)-glycosphingolipid. Although SAL did not influence the viability of the cells directly, only 10 and 100 ng/mL of vincristine and etoposide, respectively induced anticancer effects when the lectin was applied in conjunction with these drugs. These phenomena were specifically inhibited by the co-presence of the α-galactoside, melibiose, which is a strong haptenic sugar of SAL that mimicks Gb3. The degree of expression regulation of the transporter proteins on the cells surface was investigated through the examination of the binding between SAL and Gb3-glycosphingolipid by immunological and molecular biological procedures. PCR data showed that MRP1 was more highly expressed when compared to another ATP-binding cassette family, multi-drug resistant protein and the expression levels of MRP1 on the cells were specifically dose- and time-dependently depleted by the addition of SAL. These results were also evaluated by immunological procedures using FACS and western-blotting. Small interfering RNA coding a part of MRP1 was transfected to Raji cells to knock down the protein, and cell death was increased by 10% when vincristine was administered at a concentration as low as 10 ng/mL compared to non-transfected cells. These results indicated that SAL possesses the potential to enhance the anticancer activites of low-concentrations of vincristine by the down-regulating the MRP1 gene expression to inhibit the multidrug resistance by binding to the target ligand Gb3-glycosphingolipid on Burkitt’s lymphoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC transporter:

ATP-binding cassette transporter

GAPDH:

Glycelardehyde-3-phosphate dehydrogenase

Gb3:

Globotriose (Galα1-4Galβ1-4Glc)

GEM:

Glycosphingolipid enriched microdomain

CRD:

Carbohydrate recognition domain

GSL:

Glycosphingolipid

FACS:

Fluorescence activated cell sorter

MDR1:

Multidrug resistance protein 1

MRP1:

Multidrug resistance associate protein 1

RIPA:

Radio-immuno-precipitation assay

RT-PCR:

Reverse transcription polymerase chain reaction

SAL:

Silurus asotus lectin

SBL:

Sialic acid binding lectin

siRNA:

Small interfering RNA

SUEL:

Sea urchin unfertilized eggs lectin

References

  1. Brandt B, Abou-Eladab EF, Tiedge M, Walzel H (2010) Cell Death Dis 1:e23

    Article  CAS  Google Scholar 

  2. Cao X, Huo Z, Lu M, Mao D, Zhao Q, Xu C, Wang C, Zeng B (2010) J Insect Sci 10:1–13

    Google Scholar 

  3. Chisada S, Yoshimura Y, Sakaguchi K, Uemura S, Go S, Ikeda K, Uchima H, Matsunaga N, Ogura K, Tai T, Okino N, Taguchi R, Inokuchi J, Ito M (2009) J Biol Chem 284:30534–30546

    Article  CAS  Google Scholar 

  4. Guan F, Handa K, Hakomori S (2011) Neurochem Res 36:1645–1653

    Article  CAS  Google Scholar 

  5. He YF, Liu YK, Lu HJ, Chen J, Yang PY (2007) J Cell Biochem 102:936–946

    Article  CAS  Google Scholar 

  6. Huh JW, Park YS, Lee JH, Kim HR, Shin MG, Kim YJ (2010) J Surg Oncol 102:765–770

    Article  Google Scholar 

  7. Hosono M, Kawauchi H, Nitta K, Takayanagi Y, Shiokawa H, Mineki R, Murayama K (1993) Biol Pharm Bull 16:1–5

    Article  CAS  Google Scholar 

  8. Hosono M, Ishikawa K, Mineki R, Murayama K, Numata C, Ogawa Y, Takayanagi Y, Nitta K (1999) Biochim Biophys Acta 1472:668–675

    Article  CAS  Google Scholar 

  9. Iglesias JL, Lis H, Sharon N (1982) Eur J Biochem 123:247–252

    Article  CAS  Google Scholar 

  10. Kawano T, Sugawara S, Hosono M, Tatsuta T, Ogawa Y, Fujimura T, Taka H, Murayama K, Nitta K (2009) Biol Pharm Bull 32:345–353

    Article  CAS  Google Scholar 

  11. Kawsar SMA, Matsumoto R, Fujii Y, Matsuoka H, Masuda N, Iwahara C, Yasumitsu H, Kanaly RA, Sugawara S, Hosono M, Nitta K, Ishizaki N, Dogasaki C, Hamako J, Matsui T, Ozeki Y (2011) Protein J 30:509–519

    Article  CAS  Google Scholar 

  12. Laemmli UK (1970) Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  13. Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM (2010) Mol Cancer 9:145

    Article  Google Scholar 

  14. Loo TW, Bartlett MC, Clarke DM (2006) Biochem J 396:537–545

    Article  CAS  Google Scholar 

  15. Loo TW, Bartlett MC, Clarke DM (2006) Biochem J 399:351–359

    Article  CAS  Google Scholar 

  16. Loo TW, Clarke DM (2008) Arch Biochem Biophys 476:51–64

    Article  CAS  Google Scholar 

  17. Nitta K, Kawano T, Sugawara S, Hosono M (2007) Yakugaku zasshi 127:553–561

    Article  CAS  Google Scholar 

  18. Nitta K, Oyama F, Oyama R, Sekiguchi K, Kawauchi H, Takayanagi Y, Hakomori S, Titani K (1993) Glycobiology 3:37–45

    Article  CAS  Google Scholar 

  19. Nitta K, Ozaki K, Ishikawa M, Furusawa S, Hosono M, Kawauchi H, Sasaki K, Takayanagi Y, Tsuiki S, Hakomori S (1994) Cancer Res 54:920–927

    CAS  Google Scholar 

  20. Ozeki Y, Matsui T, Suzuki M, Titani K (1999) Biochemistry 30:2391–2394

    Article  Google Scholar 

  21. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Nature 378:736–739

    Article  CAS  Google Scholar 

  22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  23. Steelant WF, Kawakami Y, Ito A, Handa K, Bruyneel EA, Mareel M, Hakomori S (2002) FEBS Lett 531:93–98

    Article  CAS  Google Scholar 

  24. Sugawara S, Hosono M, Ogawa Y, Takayanagi M, Nitta K (2005) Biol Pharm Bull 28:434–441

    Article  CAS  Google Scholar 

  25. Sugawara S, Sasaki S, Ogawa Y, Hosono M, Nitta K (2004) Yakugaku Zasshi 125:327–334

    Article  Google Scholar 

  26. Tateno H (2010) Biosci Biotechnol Biochem 74:1141–1144

    Article  CAS  Google Scholar 

  27. Tennant JR (1964) Transplantation 2:685–694

    Article  CAS  Google Scholar 

  28. Watanabe Y, Tateno H, Nakamura-Tsuruta S, Kominami J, Hirabayashi J, Nakamura O, Watanabe T, Kamiya H, Naganuma T, Ogawa T, Naude RJ, Muramoto K (2009) Dev Comp Immunol 33:187–197

    Article  CAS  Google Scholar 

  29. Wiehcelman KJ, Braun RD, Fitzpatrick JD (1998) Anal Biochem 75:231–237

    Google Scholar 

  30. Wiels J, Holmes EH, Cochran N, Tursz T, Hakomori S (1984) J Biol Chem 259:14783–14787

    CAS  Google Scholar 

  31. Wu Z, Li X, Zeng Y, Zhuang X, Shen H, Zhu H, Liu H, Xiao H (2010) Basic Clin Pharmacol Toxicol 108:177–184

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants-in-Aid for Frontier Research Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan; Grants-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows, and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Fujii.

Additional information

Yuki Fujii and Shigeki Sugawara have equally contributed as the first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, Y., Sugawara, S., Araki, D. et al. MRP1 Expressed on Burkitt’s Lymphoma Cells was Depleted by Catfish Egg Lectin Through Gb3-Glycosphingolipid and Enhanced Cytotoxic Effect of Drugs. Protein J 31, 15–26 (2012). https://doi.org/10.1007/s10930-011-9369-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9369-2

Keywords

Navigation