Skip to main content
Log in

Effect of Chemical Chaperones on Glucose-Induced Lysozyme Modifications

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Nonenzymatic glycation of biomacromolecules occurs due to the diabetes mellitus and ageing. A number of small molecules, known as chemical chaperones, stabilize protein conformation against thermal and chemically induced denaturation. These compounds are including: polyamines (e.g. spermine and spermidine), amino acids (e.g. lysine) and polyols (e.g. glycerol). In this study the effect of spermidine (Spd), spermine (Spm), and glycerol on glycation, structure and function of lysozyme (LZ), as an extra-cellular protein, by different techniques is investigated. LZ is incubated with or without glucose (50 or 100 mM) in the absence or presence of Spd/Spm/glycerol at 37 °C up to 16 weeks. All the observed changes of glycated-LZ in comparison with the native protein, including: increased fluorescence emission, alteration in the secondary and tertiary structure, and reduced electrophoretic mobility- indicate its structural changes that are accompanied with its reduced activity. Glucose in the presence or absence of Spd induces the protein dimerization, but glucose plus Spm induces its trimmerization. In contrast, glycerol inhibits the LZ glycation and prevents the large changes on its structure and function. Glucose binds lysine residues, decreases the protein positive charges and induces some alterations in its structure and activity. Polyamines also directly bind to LZ, increase its positive charges and hence induce more glycation; more conformational changes, oligomerization and its inactivation in the presence of glucose, but glycerol affect the protein environment and preserve protein from these harmful effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Glc:

Glucose

LZ:

Lysozyme

Spm:

Spermine

Spd:

Spermidine

AGE:

Advanced glycation endproducts

CD:

Circular dichroism

Asp:

Aspartate

Glu:

Glutamate

Arg:

l-Arginine

Lys:

l-Lysine

AG:

Aminoguanidine

References

  1. Bachrach U, Wang YC, Tabib A (2001) News Physiol Sci 16:106–109

    CAS  Google Scholar 

  2. Bathaie SZ, Jafarnejad A, Ashouri MR, Mirmiranpour H, Shirali S, Nobakht F, Bahmani F, Alipour A, Nakhjavani M, Khaghani S (2011) IXth European Symposium of the Protein Society, Stockholm, Sweden

  3. Bathaie SZ, Moosavi-Movahedi AA, Ranjbar B, Saboury AA (2003) Colloids Surf B Biointerfaces 28:17–25

    Article  CAS  Google Scholar 

  4. Brownlee M, Vlassara H, cerami A (1987) In: Crabbe, MJC (Ed.) Diabetic complications, scientific and clinical aspects. Edinburgh: Churchill Livingstone Edinburg, pp 94–139

  5. Coussons PJ, Jacoby J, McKay A, Kelly SM, Price NC, Hunt JV (1997) Free Rad Biol Med 22:1217–1227

    Article  CAS  Google Scholar 

  6. Goldberg ME, Rudolph R, Jaenicke R (1991) Biochemistry 30:2790–2797

    Article  CAS  Google Scholar 

  7. Gugliucci A, Menini T (2003) Life Sci 72:2603–2616

    Article  CAS  Google Scholar 

  8. Gugliucci A (2004) Clin Chim Acta 344:23–35

    Article  CAS  Google Scholar 

  9. Gupta S, Chough E, Daley J, Oates P, Tornheim K, Ruderman NB, Keaney JF (2002) Am J physiol Cell Physiol 282:560–566

    Google Scholar 

  10. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) Proc Natl Acad Sci USA 95:11140–11145

    Article  CAS  Google Scholar 

  11. Igarashi K, Kashiwagi K (2000) Biochem Biophys Res Commun 271:559–564

    Article  CAS  Google Scholar 

  12. Jafarnejad A, Bathaie SZ, Nakhjavani M, Hassan MZ, Banasadegh S (2008) Diab Metab Res Rev 24:64–73

    Article  CAS  Google Scholar 

  13. Jafarnejad A, Bathaie SZ, Nakhjavani M, Hassan MZ (2008) Life Sci 82:301–307

    Article  CAS  Google Scholar 

  14. Jafarnejad A, Bathaie SZ, Nakhjavani M, Hassan MZ (2008) J Pharmacol Exp Therapeut 324:850–857

    Article  CAS  Google Scholar 

  15. Janne J, Alhonen L, Leinonen P (1991) Annal Med 23:241–259

    Article  CAS  Google Scholar 

  16. Jenzano JW, Lundblad RL (1988) J Clin Microbiol 26:34–37

    CAS  Google Scholar 

  17. Jolles P, Jolles J (1984) Mol Cell Biochem 63:165–189

    Article  CAS  Google Scholar 

  18. Kalousová M, Zima T, Tesar V, Lachmanová J (2002) Blood Pur 20:531–536

    Article  Google Scholar 

  19. Khan AU, Mei YH, Wilson T (1992) Proc Natl Acad Sci USA 89:11426–11427

    Article  CAS  Google Scholar 

  20. Kislinger T, Humeny A, Peich CC, Zhang X, Niwa T, Pischetsrieder M, Becker C-M (2003) J Agric Food Chem 51:51–57

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  22. Li YM (1998) Adv Exp Med Biol 443:57–63

    CAS  Google Scholar 

  23. Li YM, Tan AX, Vlassara H (1995) Nat Med 1:1057–1061

    Article  CAS  Google Scholar 

  24. Liggins J, Furth AJ (1997) Biochim Biophys Acta 1361:123–130

    Article  CAS  Google Scholar 

  25. Liu H, Zheng F, Li Z, Uribarri J, Ren B, Hutter R, Tunstead JR, Badimon J, Striker GE, Vlassara H (2006) Am J Pathol 169:303–313

    Article  CAS  Google Scholar 

  26. Lomozik L, Gasowska A, Bregier-Jarzebowska R, Jastrzab R (2005) Coord Chem Rev 249:2335–2350

    Article  CAS  Google Scholar 

  27. Mason DY, Taylor CR (1975) J Clin Pathol 28:124–132

    Article  CAS  Google Scholar 

  28. Masuda T, Ide N, Kitabatake N (2005) Chem Senses 30:253–264

    Article  CAS  Google Scholar 

  29. Masuda T, Ide N, Kitabatake N (2005) Chem Senses 30:667–681

    Article  CAS  Google Scholar 

  30. Méndez JD, Leal LI (2004) Biomed Pharmacother 58:598–604

    Article  Google Scholar 

  31. Monnier VM (2003) Arch Biochem Biophys 419:1–15

    Article  CAS  Google Scholar 

  32. Ono Y, Aoki S, Ohnishi K, Yasuda T, Kawano K, Tsukada Y (1998) Diabetes Res Clin Pract 41:131–137

    Article  CAS  Google Scholar 

  33. Peeters T, Vantrappen G (1975) Gut 16:553–558

    Article  CAS  Google Scholar 

  34. Powroznik B, Gharbi M, Dandrifosse G, Peulen O (2004) Biochimie 86:651–656

    Article  CAS  Google Scholar 

  35. Rahmanpour R, Bathaie SZ (2011) J Biomol Struct Dyn 28:575–586

    Article  CAS  Google Scholar 

  36. Reisfeld RA, Lewis UJ, Williams DE (1962) Nature 195:281–283

    Article  CAS  Google Scholar 

  37. Stitt AW (2001) Brit J Ophthalmol 85:746–753

    Article  CAS  Google Scholar 

  38. Takata K, Horiuchi S, Araki N, Shiga M, Saitoh M, Morino Y (1988) J Biol Chem 263:14819–14825

    CAS  Google Scholar 

  39. Zheng F, Cai W, Mitsuhashi T, Vlassara H (2001) Mol Med 7:737–747

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Iranian National Science Foundation grant No. 88000429. The authors are also very thankful to the Research Council of Tarbiat Modares University for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zahra Bathaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bathaie, S.Z., Nobakht, B.B.F., Mirmiranpour, H. et al. Effect of Chemical Chaperones on Glucose-Induced Lysozyme Modifications. Protein J 30, 480–489 (2011). https://doi.org/10.1007/s10930-011-9353-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9353-x

Keywords

Navigation