Skip to main content

Advertisement

Log in

Mixed-Type Inhibition of Tyrosinase from Agaricus bisporus by Terephthalic Acid: Computational Simulations and Kinetics

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Tyrosinase inhibition studies are needed due to the agricultural and medicinal applications. For probing effective inhibitors of tyrosinase, a combination of computational prediction and enzymatic assay via kinetics were important. We predicted the 3D structure of tyrosinase from Agaricus bisporus, used a docking algorithm to simulate binding between tyrosinase and terephthalic acid (TPA) and studied the reversible inhibition of tyrosinase by TPA. Simulation was successful (binding energies for Autodock4 = −1.54 and Fred2.0 = −3.19 kcal/mol), suggesting that TPA interacts with histidine residues that are known to bind with copper ions at the active site. TPA inhibited tyrosinase in a mixed-type manner with a K i  = 11.01 ± 2.12 mM. Measurements of intrinsic and ANS-binding fluorescences showed that TPA induced no changes in tertiary structure. The present study suggested that the strategy of predicting tyrosinase inhibition based on hydroxyl groups and orientation may prove useful for screening of potential tyrosinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DOPA:

3,4-Dihydroxyphenylalanine

TPA:

Terephthalic acid

ANS:

1-Anilinonaphthalene-8-sulfonate

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  2. Cui L, Dai G, Xu L, Wang S, Song L, Zhao R, Xiao H, Zhou J, Wang X (2004) Toxicology 201:59–66

    Article  CAS  Google Scholar 

  3. Dai G, Cui L, Song L, Cheng J, Zhong Y, Zhao R, Wang X (2005) Food Chem Toxicol 43:217–224

    Article  CAS  Google Scholar 

  4. Dai GD, Cui LB, Song L, Zhao RZ, Chen JF, Wang YB, Chang HC, Wang XR (2006) Biomed Environ Sci 19:8–14

    CAS  Google Scholar 

  5. Decker H, Tuczek F (2000) Trends Biochem Sci 25:392–397

    Article  CAS  Google Scholar 

  6. Gheibi N, Saboury AA, Mansuri-Torshizi H, Haghbeen K, Moosavi-Movahedi AA (2005) J Enzyme Inhib Med Chem 20:393–399

    Article  CAS  Google Scholar 

  7. Gou L, Lü ZR, Park D, Oh SH, Shi L, Park SJ, Bhak J, Park YD, Ren ZL, Zou F (2008) J Biomol Struct Dyn 26:395–402

    CAS  Google Scholar 

  8. Guerrero A, Rosell G (2005) Curr Med Chem 12:461–469

    CAS  Google Scholar 

  9. Han HY, Lee JR, Xu WA, Hahn MJ, Yang JM, Park YD (2007) J Biomol Struct Dyn 25:165–171

    CAS  Google Scholar 

  10. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  11. Jimbow K, Park JS, Kato F, Hirosaki K, Toyofuku K, Hua C, Yamashita T (2000) Pigment Cell Res 13:222–229

    Article  CAS  Google Scholar 

  12. Kanade SR, Suhas VL, Chandra N, Gowda LR (2007) FEBS J 274:4177–4187

    Article  CAS  Google Scholar 

  13. Kanost MR, Jiang H, Yu XQ (2004) Immunol Rev 198:97–105

    Article  CAS  Google Scholar 

  14. Khatib S, Nerya O, Musa R, Shmuel M, Tamir S, Vaya J (2005) Bioorg Med Chem 13:433–441

    Article  CAS  Google Scholar 

  15. Kim D, Park J, Kim J, Han C, Yoon J, Kim N, Seo J, Lee C (2006) J Agric Food Chem 54:935–941

    Article  CAS  Google Scholar 

  16. Kim YJ, Uyama H (2005) Cell Mol Life Sci 62:1707–1723

    Article  CAS  Google Scholar 

  17. Lai SC, Chen CC, Hou RF (2002) J Med Entomol 39:266–274

    Article  CAS  Google Scholar 

  18. Lape M, Elam C, Paula S (2010) Biophys Chem 150:88–97

    Article  CAS  Google Scholar 

  19. Li Y, Wang Y, Jiang H, Deng J (2009) Proc Natl Acad Sci USA 106:17002–17006

    Article  CAS  Google Scholar 

  20. Lü ZR, Shi L, Wang J, Park D, Bhak J, Yang JM, Park YD, Zhou HW, Zou F (2010) Appl Biochem Biotechnol 160:1896–1908

    Article  Google Scholar 

  21. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    Article  CAS  Google Scholar 

  22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  23. Olivares C, Solano F (2009) Pigment Cell Melanoma Res 22:750–760

    Article  CAS  Google Scholar 

  24. Park KH, Lee JR, Hahn HS, Kim YH, Bae CD, Yang JM, Oh S, Bae YJ, Kim DE, Hahn MJ (2006) Chem Pharm Bull 54:1266–1270

    Article  CAS  Google Scholar 

  25. Park YD, Kim SY, Lyou YJ, Lee JY, Yang JM (2005) Biochimie 87:931–937

    Article  CAS  Google Scholar 

  26. Park YD, Kim SY, Lyou YJ, Lee DY, Yang JM (2006) Biochem Cell Biol 84:112–116

    Article  CAS  Google Scholar 

  27. Park YD, Lyou YJ, Hahn HS, Hahn MJ, Yang JM (2006) J Biomol Struct Dyn 24:131–138

    CAS  Google Scholar 

  28. Rescigno A, Sollai F, Pisu B, Rinaldi A, Sanjust E (2002) J Enzyme Inhib Med Chem 17:207–218

    Article  CAS  Google Scholar 

  29. Sendovski M, Kanteev M, Ben-Yosef VS, Adir N, Fishman A (2011) J Mol Biol 405:227–237

    Article  CAS  Google Scholar 

  30. Shiino M, Watanabe Y, Umezawa K (2001) Bioorg Med Chem 9:1233–1240

    Article  CAS  Google Scholar 

  31. Shiino M, Watanabe Y, Umezawa K (2003) Bioorg Chem 31:129–135

    Article  CAS  Google Scholar 

  32. Xie MX, Xu XY, Wang YD (2005) Biochim Biophys Acta 1724:215–224

    CAS  Google Scholar 

  33. Yamazaki Y, Kawano Y, Yamanaka A, Maruyama S (2009) Bioorg Med Chem Lett 19:4178–4182

    Article  CAS  Google Scholar 

  34. Yan Q, Cao R, Yi W, Yu L, Chen Z, Ma L, Song H (2009) Bioorg Med Chem Lett 19:4055–4058

    Article  CAS  Google Scholar 

  35. Yokota T, Nishio H, Kubota Y, Mizoguchi M (1998) Pigment Cell Res 11:355–361

    Article  CAS  Google Scholar 

  36. Yoon J, Fujii S, Solomon EI (2009) Proc Natl Acad Sci USA 106:6585–6590

    Article  CAS  Google Scholar 

  37. Zhu YJ, Qiu L, Zhou JJ, Guo HY, Hu YH, Li ZC, Wang Q, Chen QX, Liu B (2010) J Enzyme Inhib Med Chem 25:798–803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Consultation Program funded by the Science and Technology Department of Zhejiang Province (2008C0200-2). Dr. Jun-Mo Yang was supported by the grants of the Korea Health 21 R&D Project (Ministry of Health, Welfare and Family Affairs, Republic of Korea, 01-PJ3-PG6-01GN12-0001 and A030003). Dr. Yong-Doo Park was supported by a grant from the project of Zhejiang Provincial Natural Science Foundation of China (Grant No. Y2091212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Youn Lee or Yong-Doo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, SJ., Si, YX., Chen, YF. et al. Mixed-Type Inhibition of Tyrosinase from Agaricus bisporus by Terephthalic Acid: Computational Simulations and Kinetics. Protein J 30, 273–280 (2011). https://doi.org/10.1007/s10930-011-9329-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9329-x

Keywords

Navigation