Skip to main content
Log in

Structural Stability of Myoglobin in Organic Media

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The structural stability of metmyoglobin in organic solvents and cosolvents was investigated aiming the choice of a suitable medium to perform its dissolution with maintenance of the native folding. The spectroscopic behavior of metmyoglobin solution in UV–Visible and circular dichroism was used to evaluate the solubility and the secondary structure. The results were dependable of the chemical structure of the organic compounds, their polarity and content, in the case of cosolvents. Protic solvents showed better ability than the aprotic ones for the biomolecule dissolution, since they are able to establish hydrogen bonds. Solvents with high polarity usually damage the secondary structure of the protein. Myoglobin was dissolved in pure methanol, ethylene glycol and glycerol. The secondary structure was retained in some extent. The controlled addition of sodium dodecyl sulfate to myoglobin aqueous solution changed the surface moiety of the protein. The complex was extracted to hexane with efficiency of 77%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

SDS:

Sodium dodecyl sulfate

C50 :

Threshold content of the organic cosolvent in which myoglobin is able to retain its native folding

PBS:

Phosphate buffer solution

DMSO:

Dimethyl sulfoxide

Metmb:

Metmyoglobin

References

  1. Babu KR, Douglas DJ (2000) Biochemistry 39:14702–14710

    Article  CAS  Google Scholar 

  2. Barteri M, Gaudiano MC, Santucci R (1996) BBA-Proteins Proteom 1295:51–58

    Google Scholar 

  3. Brantley RE, Smerdon SJ, Wilkinson AJ, Singleton EW, Olson JS (1993) J Biol Chem 268:6995–7010

    CAS  Google Scholar 

  4. Burova TV, Grinberg NV, Grinberg VY, Rariy RV, Klibanov AM (2000) BBA-Proteins Proteom 1478:309–317

    CAS  Google Scholar 

  5. Ferraz HC, Duarte LT, Di Luccio M, Alves TLM, Habert AC, Borges CP (2007) Braz J Chem Eng 24:101–118

    Article  CAS  Google Scholar 

  6. Figueiredo KCS (2008) PhD thesis, Federal University of Rio de Janeiro, Rio de Janeiro, pp. 1–202

  7. Glandieres JM, Calmettes P, Martel P, Zentz C, Massat A, Ramstein J, Alpert B (1995) Eur J Biochem 227:241–248

    Article  CAS  Google Scholar 

  8. Guo YZ, Clark DS (2001) BBA-Proteins Proteom 1546:406–411

    CAS  Google Scholar 

  9. Herskovits T, Gadegbeku B, Jaillet H (1970) J Biol Chem 245:2588–2598

    CAS  Google Scholar 

  10. Jackson M, Mantsch HH (1991) BBA-Proteins Proteom 1078:231–235

    CAS  Google Scholar 

  11. Kaim W, Schwedersky B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life—an introduction and guide. Wiley, New York

    Google Scholar 

  12. Kelly SM, Jess TJ, Price NC (2005) BBA-Proteins Proteom 1751:119–139

    Article  CAS  Google Scholar 

  13. Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Eur J Biochem 198:31–41

    Article  CAS  Google Scholar 

  14. Klibanov AM (1997) Trends Biotechnol 15:97–100

    Article  CAS  Google Scholar 

  15. Kony DB, Hunenberger PH, van Gunsteren WF (2007) Protein Sci 16:1101–1118

    Article  CAS  Google Scholar 

  16. Li QC, Mabrouk PA (2003) J Biol Inorg Chem 8:83–94

    Article  Google Scholar 

  17. Lim LY, Wan SC (1994) Drug Dev Ind Pharm 20:1007–1020

    Article  CAS  Google Scholar 

  18. Manavalan P, Johnson WC Jr (1987) Anal Biochem 167:76–85

    Article  CAS  Google Scholar 

  19. Matsuura J, Powers ME, Manning MC, Shefter E (1993) J Am Chem Soc 115:1261–1264

    Article  CAS  Google Scholar 

  20. Mattos C, Ringe D (2001) Curr Opin Struc Biol 11:761–764

    Article  CAS  Google Scholar 

  21. Meyer JD, Manning MC (1998) Pharm Res 15:188–193

    Article  CAS  Google Scholar 

  22. Rosell CM, Vaidya AM, Halling PJ (1995) BBA-Proteins Proteom 1252:158–164

    Google Scholar 

  23. Shikama K (2006) Prog Biophys Mol Biol 91:83–162

    Article  CAS  Google Scholar 

  24. Sreerama N, Woody RW (2000) Anal Biochem 287:252–260

    Article  CAS  Google Scholar 

  25. Sugawara Y, Matsuoka A, Kaino A, Shikama K (1995) Biophys J 69:582–592

    Article  Google Scholar 

  26. Tofani L, Feis A, Snoke RE, Berti D, Baglioni P, Smulevich G (2004) Biophys J 87:1186–1195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Capes and CNPQ for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia C. S. Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, K.C.S., Ferraz, H.C., Borges, C.P. et al. Structural Stability of Myoglobin in Organic Media. Protein J 28, 224–232 (2009). https://doi.org/10.1007/s10930-009-9187-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9187-y

Keywords

Navigation