Skip to main content
Log in

Training the next generation of pharmacometric modelers: a multisector perspective

  • Commentary
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

A Correction to this article was published on 05 September 2023

This article has been updated

Abstract

The current demand for pharmacometricians outmatches the supply provided by academic institutions and considerable investments are made to develop the competencies of these scientists on-the-job. Even with the observed increase in academic programs related to pharmacometrics, this need is unlikely to change in the foreseeable future, as the demand and scope of pharmacometrics applications keep expanding. Further, the field of pharmacometrics is changing. The field largely started when Lewis Sheiner and Stuart Beal published their seminal papers on population pharmacokinetics in the late 1970’s and early 1980’s and has continued to grow in impact and use since its inception. Physiological-based pharmacokinetics and systems pharmacology have grown rapidly in scope and impact in the last decade and machine learning is just on the horizon. While all these methodologies are categorized as pharmacometrics, no one person can be an expert in everything. So how do you train future pharmacometricians? Leading experts in academia, industry, contract research organizations, clinical medicine, and regulatory gave their opinions on how to best train future pharmacometricians. Their opinions were collected and synthesized to create some general recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Change history

Notes

  1. An estimand is a systematic description of how the treatment effect or question of interest will be estimated from a clinical trial.

References

  1. Benet LZ, Rowland M (1982) Pharmacometrics: a new journal section. J Pharmacokinetic Pharmacodynam 10:349–350

    Article  Google Scholar 

  2. Michelet R, Aulin LBS, Borghardt JM, Dalla Costa T, Denti P, Ibarra M, Ma G, Meibohm B, Pillai GC, Schmidt S, Hennig S, Kloft C (2023) Barriers to global pharmacometrics: educational challenges and opportunities across the globe. CPT: Pharmacometrics Syst Pharmacol 12:743–747

    CAS  PubMed  Google Scholar 

  3. Barrett JS, Fossler MJ, Cadieu KD, Gastonguay MR (2008) Pharmacometrics: a multidisciplinary field to facilitate critical thinking in drug development and translational research settings. J Clin Pharmacol 48:632–639

    Article  PubMed  Google Scholar 

  4. Gieschke R, Steimer JL (2000) Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development. Eur J Drug Metab Pharmacokin 25:49–58

    Article  CAS  Google Scholar 

  5. Lee WH, Fujiwara M (1971) Pharmacometrics of guinea-pig’s gallbladder in vitro. Taiwan Yi Xue Hui Za Zhi 70:687–696

    CAS  PubMed  Google Scholar 

  6. Levy G (1966) Kinetics of pharmacologic effects. Clin Pharmacol Ther 7:362–372

    Article  CAS  PubMed  Google Scholar 

  7. Karlsson MO (2016). Big world challenges for pharmacometrics. World Conference on Pharmacometrics, Brisbane, Australia.

  8. Gobburu JVS (2022) Future of pharmacometrics: predictive healthcare analytics. Br J Clin Pharmacol 88:1427–1429

    Article  PubMed  Google Scholar 

  9. Wang Y, Zhu H, Madabushi R, Liu Q, Huang SM, Zineh I (2019) Model-informed drug development: current US regulatory practice and future considerations. Clin Pharmacol Ther 105:899–911

    Article  PubMed  Google Scholar 

  10. Hughes DM, Goswami S, Keizer RJ, Hughes M-SA, Faldasz JD (2020) Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population. J Antimicrob Chemother 75:434–437

    CAS  PubMed  Google Scholar 

  11. Gonzalez D, Rao GG, Bailey SC, Brouwer KLR, Cao Y, Crona DJ, Kashuba ADM, Lee CR, Morbitzer K, Patterson JH, Wiltshire T, Easter J, Savage SW, Powell RJ (2017) Precision dosing: public health need, proposed framework, and anticipated impact. Clin Transl Sci 10:443–454

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manolis E, Musuamba FT, Karlsson K (2020) Regulatory considerations for building an in silico clinical pharmacology backbone by 2030. Clin Pharmacol Ther 107:746–748

    Article  PubMed  Google Scholar 

  13. Karatza E, Yakovleva T, Adams K, Rao GG, Ait-Oudhia S (2022) Knowledge dissemination and central indexing of resources in pharmacometrics: an ISOP education working group initiative. J Pharmacokinetic Pharmacodynam 2022:397–400

    Article  Google Scholar 

  14. Mentre F, Friberg LE, Duffull S, French J, Lauffenburger DA, Li L, Mager DE, Sinha V, Sobie E, Zhao P (2020) Pharmacometrics and systems pharmacology 2030. Clin Pharmacol Ther 107:76–78

    Article  PubMed  Google Scholar 

  15. van der Graaf PH, Giacomini KM (2020) Clinical pharmacology & therapeutics 2030. Clin Pharmacol Ther 107:13–16

    Article  PubMed  Google Scholar 

  16. Bonate PL (2014) Be a model communicator: and sell your models to anyone. KDP Publishing (Amazon), Seattle

    Google Scholar 

  17. Lesko, L. J. (2009). Formation of the Division of Pharmacometrics within Office of Clinical Pharmacology at FDA. (https://www.mail-archive.com/nmusers@globomaxnm.com/msg01493.html

  18. Akcha M, Bartels C, Bornkamp B, Bretz F, Coello N, Dumortier T, Looby M, Sander O, Schmidli H, Steimer J-L, Vong C (2021) Estimands—what they are and why they are important for pharmacometricians. CPT Pharmacometrics Syst Pharmacol 10:279–282

    Article  Google Scholar 

  19. Jaki T, Gordon A, Forster P, Bijnens L, Bornkamp B, Brannath W, Fontana R, Gasparini M, Hampson LV, Jacobs T, Jones B, Paoletti X, Posch M, Titman A, Vonk R, Koenig F (2018) A proposal for a new PhD level curriculum on quantitative methods for drug development. Pharm Stat 17:593–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaki T, Gordon A, Forster P, Bijnens L, Bornkamp B, Brannath W, Fontana R, Gasparini M, Hampson LV, Jacobs T, Jones B, Paoletti X, Posch M, Titman A, Vonk R, Koenig F (2019) Response to comments on Jaki et al., a proposal for a new PhD level curriculum on quantitative methods for drug development. Pharm Stat 18:284–286

    Article  PubMed  Google Scholar 

  21. Krause A, Kloft C, Huisinga W, Karlsson MO, Pinheiro J, Bies R, Rogers J, Mentre F, Musser BJ, ASA Special Interest Group on Statistics and Pharmacometrics/ISoP Special Interest Group on Statistics and Pharmacometrics (2019) Comment on Jaki et al., a proposal for a new PhD level curriculum on quantitative methods for drug development. Pharm Stat 18:278–281

    Article  PubMed  Google Scholar 

  22. Dingemanse J, Krause A (2017) Impact of pharmacokinetic-pharmacodynamic modelling in early clinical drug development. Eur J Pharm Sci 109S:S53–S58

    Article  PubMed  Google Scholar 

  23. Lott D, Lehr T, Dingemanse J, Krause A (2018) Modeling tolerance development for the effect on heart rate of the selective S1P1 receptor modulator ponesimod. Clin Pharmacol Ther 103:1083–1092

    Article  CAS  PubMed  Google Scholar 

  24. Krause A, Lowe PJ (2014) Visualization and communication of pharmacometric models with Berkeley Madonna. CPT Pharmacometrics Syst Pharmacol 3:e116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lixoft (2020). Simulx Documentation. (https://simulx.lixoft.com/

  26. R Studio, Inc. (2013). Shiny: Web Application Framework for R. (http://shiny.rstudio.com/

  27. Vlasakakis G, Comets E, Keunecke A, Gueorguieva I, Magni P, Terranova N, Della Pasqua O, de Lange EC, Kloft C (2013) White paper: landscape on technical and conceptual requirements and competence framework in drug/disease modeling and simulation. CPT Pharmacometrics Syst Pharmacol 2:e40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salas-Vallina A, Alegra J, Fernandez Guerrero R (2018) Happiness at work in knowledge-intensive contexts: opening the research agenda. Eur Res ManagBus Econ 24:149–159

    Google Scholar 

  29. Sinek S (2009) Start with why: how great leaders inspire everyone to take action. Penguin, New York

    Google Scholar 

  30. Anziano R, Milligan PA (2021) Model informed drug development: collaboration through a common framework. Clin Pharmacol Ther 110:1165–1167

    Article  PubMed  Google Scholar 

  31. Barrett JS (2008) The role of quantitative pharmacology in an academic translational research environment. AAPS J 10:9–14

    Article  PubMed  PubMed Central  Google Scholar 

  32. Romero K, Corrigan B, Tornoe CW, Gobburu JVS, Danhof M, Gillespie WR, Gastonguay MR, Meibohm B, Derendorf H (2010) Pharmacometrics as a discipline is entering the “industrialization” phase: standards, automation, knowledge sharing, and training are critical for future success. J Clin Pharmacol 50(Suppl 9):9S-19S

    PubMed  Google Scholar 

  33. Brundage RC, Pfister M, D’Argenio D, Gastonguay M, Miller R, Tannenbaum S (2010) ACoP: The tools, carpenters, and architects building the discipline of pharmacometrics. J Clin Pharmacol 50(Suppl 9):7S-8S

    PubMed  Google Scholar 

  34. Pfister M, Brundage RC, Gastonguay M, Miller R, Tannenbaum SJ, D’Argenio DZ (2010) Defining the future of pharmacometrics: the American Society of Pharmacometrics. J Clin Pharmacol 50(9):158S

    PubMed  Google Scholar 

  35. Bruno R, Mentre F, Tannenbaum S, Wang Y, Corrigan B, Mager DE (2014) The ISoP standards and best practices committee. Clin Pharmacol Ther 95:581–582

    Article  CAS  PubMed  Google Scholar 

  36. Holford N, Karlsson MO (2007) Time for quantitative clinical pharmacology: a proposal for a pharmacometrics curriculum. Clin Pharmacol Ther 82:103–105

    Article  CAS  PubMed  Google Scholar 

  37. Brouwer KLR, Schmidt S, Floren LC, Johnson JA (2020) Clinical pharmacology education—the decade ahead. Clin Pharmacol Ther 107:37–39

    Article  PubMed  Google Scholar 

  38. Venkatakrishnan K, Zheng S, Mustante CJ, Jin JY, Riggs MR, Krishnaswami S, Visser SAG (2020) Toward progress in quantitative translational medicine: a call to action. Clin Pharmacol Ther 107:85–88

    Article  PubMed  Google Scholar 

  39. Neely M, Jelliffe R (2008) Practical therapeutic drug management in HIV-infected patients: use of population pharmacokinetic models supplemented by individualized Bayesian dose optimization. J Clin Pharmacol 48:1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neely M, Jelliffe R (2010) Individualized dosing: 21st century therapeutics and the clinical pharmacometrician. J Clin Pharmacol 50:842–847

    Article  CAS  PubMed  Google Scholar 

  41. Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny J-L, Marsousi N, Daali Y, Fairman D, Cook J, Lesko LJ, McCune JS, Knibbe C, de Wildt SN, Leeder JS, Neely M, Zuppa AF, Vicini P, Aarons L, Johnson TN, Boiani J, Rostami-Hodjegan A (2017) Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future. Clin Pharmacol Ther 101:646–656

    Article  CAS  PubMed  Google Scholar 

  42. Vinks AA, Peck RW, Neely M, Mould DR (2020) Development and implementation of electronic health record-integrated model-informed clinical descision support tools for the precision dosing of drugs. Clin Pharmacol Ther 107:129–135

    Article  PubMed  Google Scholar 

  43. Zhang L, Allerheilegen SRB, Lalonde R, Stanski D, Pfister M (2010) Fostering culture and optimizing organizational structure for implementing model-based drug development. J Clin Pharmacol 50(9):146S-150S

    PubMed  Google Scholar 

  44. Barrett JS, Romero K, Rayner C, Gastonguay M, Pillai C, Tannenbaum S, Kern S, Selich M, Francisco D, Zinneh I (2023). A modern curriculum for training scientists in model-informed drug development (MIDD): initial proposal developed in support of FDA grant to train regulatory scientists. Clin Pharmacol Ther (in press).

  45. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH (1998) Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 338:499–505

    Article  CAS  PubMed  Google Scholar 

  46. Waterterdal Syversen S, Kaasen Jorgensen K, Lovik Goll G, Kirkesaether Brun M, Sandanger O et al (2021) Effect of therapeutic drug monitoring vs standard therapy during maintenance infliximab therapy on disease control in patients with immune-mediated inflammatory diseases: a randomized clinical trial. JAMA 326:2375–2384

    Article  PubMed  Google Scholar 

  47. Ewoldt TMJ, Abdulla A, Rietdijk WJR, Muller AE, de Winter BCM, Hunfeld NGM, Purmer IM, van Vliet P, Wils E-J, Haringman J, Draisma A, Rijpstra TA, Karakus A, Gommers D, Endeman H, Koch BCP (2022) Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial. Intensive Care Med 48:1760–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lodise TP, Rosenkranz SL, Finnemeyer M, Evans S, Sims M, Zervos MJ, Creech CB, Patel PC, Keefer M, Riska P, Silveira FP, Scheetz M, Wunderink RG, Rodriguez M, Schrank J, Beasdale SC, Schultz S, Barron M, Stapleton A, Wray D, Chambers H, Fowler VG, Holland TL (2020) The emperor’s new clothes: PRospective observational evaluation of the association between Initial vancomycin exposure and failure rates among ADult HospitalizEd patients With methicillin-resistant Staphylococcus aureus bloodstream infections (PROVIDE). Clin Infect Dis 70:1536–1545

    Article  CAS  PubMed  Google Scholar 

  49. Standing J (2017) Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br J Clin Pharmacol 83:247–254

    Article  PubMed  Google Scholar 

  50. Ito K, Murphy D (2013) Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol 16:e79

    Google Scholar 

  51. Fidler M, Hooijnaijers R, Schoemaker R, Wilkins JJ, Xiong Y, Wang W (2021) R and nlmixr as a gateway between statistics and pharmacometrics. CPT Pharmacometrics Syst Pharmacol 10:283–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fidler M, Wilkins JJ, Hooijnaijers R, Post TM, Schoemaker R, Trame MJ, Xiong Y, Wang W (2019) Nonlinear mixed-effects model development and simulation using nlmixr and related R open-source packages. CPT Pharmacometrics Syst Pharmacol 8:621–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ogami C, Tsuji Y, Seki H, Kawano H, To H, Matsumoto Y, Hosono H (2021) An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations. CPT Pharmacometrics Syst Pharmacol 10:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Standing J, Anderson BJ, Holford NHG, Lutsar I, Metsvaht T (2015) Comment on pharmacokinetic studies in neonates: the utility of an opportunistic sampling design. Clin Pharmacokinet 54:1287–1288

    Article  PubMed  Google Scholar 

  55. Germovsek E, Lutsar I, Kipper K, Karlsson MO, Planche T, Chazallon C, Meyer L, Trafojer UMT, Metsvaht T, Fournier I, Sharland M, Heath P, Standing JF, NeoMero Consortium (2018) Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: results from the NeoMero studies. J Antimicrob Chemother 73:1908–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kane Z, Gastine S, Obiero C, Williams P, Murunga S, Thitiri J, Ellis S, Correira E, Nyaoke B, Kipper K, van der Anker J, Sharland M, Berkley JA, Standing JF (2021) IV and oral fosfomycin pharmacokinetics in neonates with suspected clinical sepsis. J Antimicrob Chemother 76:1855–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stockmann C, Barrett JS, Roberts JK, Sherwin CMT (2015) Use of modeling and simulation in the design and conduct of pediatric clinical trials and the optimization of individualized dosing regimens. CPT Pharmacometrics Syst Pharmacol 4:630–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Germovsek E, Barker CIS, Sharland M, Standing J (2017) Scaling clearance in paediatric pharmacokinetics: All models are wrong, which are useful? Br J Clin Pharmacol 83:777–790

    Article  CAS  PubMed  Google Scholar 

  59. Darlow CA, Hope W (2022) Correction to: flomoxef for neonates: extending options for treatment of neonatal sepsis caused by ESBL-producing Enterobacterales. J Antimicrob Chemother 77:2049

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wu Y-E, Zhao W (2022) 'Population pharmacokinetics and dosing optimization of mezlocillin in neonates and young infants’-authors’ response. J Antimicrob Chemother 77:3525–3526

    Article  CAS  PubMed  Google Scholar 

  61. Shang Z-H, Wu Y-E, Lv D-M, Zhang W, Liu W-Q, van den Anker J, Xu Y, Zhao W (2022) Optimal dose of cefotaxime in neonates with early-onset sepsis: a developmental pharmacokinetic model-based evaluation. Front Pharmacol Sept 7(13):916253

    Article  Google Scholar 

Download references

Acknowledgements

Steve Duffull would like to thank Daniel Wright for sharing his thoughts and expertise on pharmacometric education. Marc Gastonguay and Matt Riggs would like to thank Sara Miller, PharmD, for her editorial assistance. Justin Wilkins would like to express his appreciation for the thoughts and perspectives provided by Rik Schoemaker, Jan-Stefan van der Walt, Janet Wade and Julia Winkler. Elodie Plan would like to acknowledge Peter Milligan and Marylore Chenel for their insightful review.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development and writing of the manuscript. PLB and AK created the figures. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Peter L. Bonate.

Ethics declarations

Disclosure

At the time of writing this, Steve Duffull has a shared position with Certara and the University of Otago. Hao Zhu’s section reflects the views of the author and should not be construed to represent FDA’s views or policies. Shinichi Kijima: The views expressed in this article are the personal views of the author. The content of this article does not reflect the views or policies of the Pharmaceuticals & Medical Devices Agency (PMDA) or its staff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author Matthew M. Riggs has been added to the author group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonate, P.L., Barrett, J.S., Ait-Oudhia, S. et al. Training the next generation of pharmacometric modelers: a multisector perspective. J Pharmacokinet Pharmacodyn 51, 5–31 (2024). https://doi.org/10.1007/s10928-023-09878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-023-09878-4

Keywords

Navigation