Skip to main content

Advertisement

Log in

Concordance between criteria for covariate model building

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

When performing a population pharmacokinetic modelling analysis covariates are often added to the model. Such additions are often justified by improved goodness of fit and/or decreased in unexplained (random) parameter variability. Increased goodness of fit is most commonly measured by the decrease in the objective function value. Parameter variability can be defined as the sum of unexplained (random) and explained (predictable) variability. Increase in magnitude of explained parameter variability could be another possible criterion for judging improvement in the model. The agreement between these three criteria in diagnosing covariate-parameter relationships of different strengths and nature using stochastic simulations and estimations as well as assessing covariate-parameter relationships in four previously published real data examples were explored. Total estimated parameter variability was found to vary with the number of covariates introduced on the parameter. In the simulated examples and two real examples, the parameter variability increased with increasing number of included covariates. For the other real examples parameter variability decreased or did not change systematically with the addition of covariates. The three criteria were highly correlated, with the decrease in unexplained variability being more closely associated with changes in objective function values than increases in explained parameter variability were. The often used assumption that inclusion of covariates in models only shifts unexplained parameter variability to explained parameter variability appears not to be true, which may have implications for modelling decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ribbing J, Nyberg J, Caster O, Jonsson EN (2007) The lasso—a novel method for predictive covariate model building in nonlinear mixed effects models. J Pharmacokinet Pharmacodyn 34(4):485–517

    Article  PubMed  Google Scholar 

  2. Khandelwal A, Harling K, Jonsson EN, Hooker AC, Karlsson MO (2011) A fast method for testing covariates in population PK/PD Models. AAPS J 13(3):464–472

    Article  PubMed Central  PubMed  Google Scholar 

  3. FDA (1999) Guidance on population pharmacokinetics. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072137.pdf

  4. EMEA European Medicines Agency (2007) Guidline on reporting the results of population pharmacokinetic analyses Doc.Ref. CHMP/EWP/185990/06

  5. Kowalski KG, Hutmacher MM (2001) Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test. J Pharmacokinet Pharmacodyn 28(3):253–275

    Article  PubMed  CAS  Google Scholar 

  6. Bies RR, Muldoon MF, Pollock BG, Manuck S, Smith G, Sale ME (2006) A genetic algorithm-based, hybrid machine learning approach to model selection. J Pharmacokinet Pharmacodyn 33(2):195–221. doi:10.1007/s10928-006-9004-6

    Article  PubMed  Google Scholar 

  7. Wählby U, Jonsson EN, Karlsson MO (2001) Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn 28(3):231–252

    Article  PubMed  Google Scholar 

  8. Hennig S, Norris R, Kirkpatrick CM (2008) Target concentration intervention is needed for tobramycin dosing in paediatric patients with cystic fibrosis–a population pharmacokinetic study. Br J Clin Pharmacol 65(4):502–510

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Sandstrom M, Lindman H, Nygren P, Johansson M, Bergh J, Karlsson MO (2006) Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol 58(2):143–156

    Article  PubMed  CAS  Google Scholar 

  10. Tan B, Naik H, Jang IJ, Yu KS, Kirsch LE, Shin CS, Craft JC, Fleckenstein L (2009) Population pharmacokinetics of artesunate and dihydroartemisinin following single- and multiple-dosing of oral artesunate in healthy subjects. Malar J 8:304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Nielsen EI, Sandstrom M, Honore PH, Ewald U, Friberg LE (2009) Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin Pharmacokinet 48(4):253–263

    Article  PubMed  CAS  Google Scholar 

  12. Hawwa AF, Collier PS, Millership JS, McCarthy A, Dempsey S, Cairns C, McElnay JC (2008) Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia. Br J Clin Pharmacol 66(6):826–837

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Karlsson MO, Sheiner LB (1993) The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 21(6):735–750

    Article  PubMed  CAS  Google Scholar 

  14. Bruno R, Iliadis MC, Lacarelle B, Cosson V, Mandema JW, Le Roux Y, Montay G, Durand A, Ballereau M, Alasia M et al (1992) Evaluation of Bayesian estimation in comparison to NONMEM for population pharmacokinetic data analysis: application to pefloxacin in intensive care unit patients. J Pharmacokinet Biopharm 20(6):653–669

    Article  PubMed  CAS  Google Scholar 

  15. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20(5):511–528

    Article  PubMed  CAS  Google Scholar 

  16. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO (2006) Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clinical Cancer Res 12(18):5481–5490

    Article  CAS  Google Scholar 

  17. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20(24):4713–4721

    Article  PubMed  Google Scholar 

  18. Karlsson MO, Jonsson EN, Wiltse CG, Wade JR (1998) Assumption testing in population pharmacokinetic models: illustrated with an analysis of moxonidine data from congestive heart failure patients. J Pharmacokinet Biopharm 26(2):207–246

    Article  PubMed  CAS  Google Scholar 

  19. Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM User’s Guides. (1989–2009), 7th edn. Icon Development Solutions, Ellicott City, MD

    Google Scholar 

  20. Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257

    Article  PubMed  Google Scholar 

  21. Lagishetty CV, Vajjah P, Duffull SB (2012) A reduction in between subject variability is not mandatory for selecting a new covariate. J Pharmacokinet Pharmacodyn 39(4):383–392

    Article  PubMed  CAS  Google Scholar 

  22. Wählby U, Thomson A, Milligan P, Karlsson M (2004) Models for time-varying covariates in population pharmacokinetic-pharmacodynamic analysis. Br J Clin Pharmaco 58(4):367–377

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Hennig.

Appendices

Appendix 1: Example of the NONMEM code used for the simulations

Appendix 2

See Table 5.

Table 5 Results represented as median and the standard deviation (SD) of the total parameter variance for CL and V under the scenario 1–5 when assessing the criteria accounting for correlated covariates and correlated parameters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennig, S., Karlsson, M.O. Concordance between criteria for covariate model building. J Pharmacokinet Pharmacodyn 41, 109–125 (2014). https://doi.org/10.1007/s10928-014-9350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9350-8

Keywords

Navigation