Skip to main content

Advertisement

Log in

Sample Size Computations for PK/PD Population Models

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

We describe an accurate, yet simple and fast sample size computation method for hypothesis testing in population PK/PD studies. We use a first order approximation to the nonlinear mixed effects model and chi-square distributed Wald statistic to compute the minimum sample size to achieve given degree of power in rejecting a null hypothesis in population PK/PD studies. The method is an extension of Rochon’s sample size computation method for repeated measurement experiments. We compute sample sizes for PK and PK/PD models with different conditions, and use Monte Carlo simulation to show that the computed sample size retrieves the required power. We also show the effect of different sampling strategies, such as minimal, i.e., as many observations per individual as parameters in the model, and intensive on sample size. The proposed sample size computation method can produce estimates of minimum sample size to achieve the desired power in hypothesis testing in a greatly reduced time than currently available simulation-based methods. The method is rapid and efficient for sample size computation in population PK/PD study using nonlinear mixed effect models. The method is general and can accommodate any type of hierarchical models. Simulation results suggest that intensive sampling allows the reduction of the number of patients enrolled in a clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.A. Bloch (1986) ArticleTitleSample size requirements and the cost of a randomized clinical trial with repeated measurements Stat. Med. 5 663–667 Occurrence Handle3823673 Occurrence Handle1:STN:280:BiiC2cfltVw%3D

    PubMed  CAS  Google Scholar 

  • E.F. Vonesh M.A. Schork (1986) ArticleTitleSample sizes in the multivariate analysis of repeated measurements Biometrics 42 601–610 Occurrence Handle3567293 Occurrence Handle1:STN:280:BiiC1crntVw%3D

    PubMed  CAS  Google Scholar 

  • J. Rochon (1998) ArticleTitleApplication of GEE procedures for sample size calculations in repeated measures experiments Stat. Med. 17 1643–1658 Occurrence Handle10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3 Occurrence Handle9699236 Occurrence Handle1:STN:280:DyaK1czmsVeqsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • S. Akselrod S. Eliash O. Oz S. Cohen (1988) ArticleTitleHemodynamic regulation in SHR: investigation by spectral analysis Am. J. Physiol. 253 H176–183

    Google Scholar 

  • K.-J. Lui (1991) ArticleTitleSample sizes for repeated measurements in dichotomous data Stat. Med. 10 463–472 Occurrence Handle2028129 Occurrence Handle1:STN:280:By6B38jmvFY%3D

    PubMed  CAS  Google Scholar 

  • K.-J. Lui W.G. Cumberland (1992) ArticleTitleSample size requirement for repeated measurements in continuous data Stat. Med. 11 633–641 Occurrence Handle1594806 Occurrence Handle1:STN:280:By2B2sblvFw%3D

    PubMed  CAS  Google Scholar 

  • K.-J. Lui (1997) ArticleTitleSample size determination for repeated measurements in bioequivalence test J. Pharmacokinetic Biop. 25 507–513 Occurrence Handle1:CAS:528:DyaK1cXis1Ojsb8%3D

    CAS  Google Scholar 

  • S.-C. Chow H. Wang (2001) ArticleTitleOn sample size calculation in bioequivalence trials J. Pharmacokinetic Biop. 28 155–169 Occurrence Handle1:STN:280:DC%2BD38%2FhtV2hsQ%3D%3D

    CAS  Google Scholar 

  • D. Dey P. Muller D. Sinha (1998) in Practical Nonparametric and Semiparametric Bayesian Statistics Springer New York

    Google Scholar 

  • D. Kang J.B. Schwartz D.A Verotta (2004) ArticleTitleSample size computation method for nonlinear mixed effects models with applications to pharmacokinetics models Stat. Med. 23 2551–2566 Occurrence Handle15287084

    PubMed  Google Scholar 

  • M. Davidian D.M. Giltinan (1995) Nonlinear Models for Repeated Measurment Data Chapman and Hall New York, New York

    Google Scholar 

  • A. Wald (1943) ArticleTitleTests of statistical hypotheses concerning several parameters when the number of observations is large T. Am. Math. Soc. 54 426–482

    Google Scholar 

  • L. Aarons S. Vozeh M. Wenk P. Weiss F. Follath (1989) ArticleTitlePopulation pharmacokinetics of tobramycin Brit. J. Clin. Pharmaco. 28 305–314 Occurrence Handle1:STN:280:By%2BD3c7gtF0%3D

    CAS  Google Scholar 

  • D.R. Abernethy J.B. Schwartz E.L. Todd R. Luchi E. Snow (1986) ArticleTitleVerapamil pharmacodynamics and disposition in young and elderly hypertensive patients: altered electrocardiographics and hypotensive responses Ann. Int. Med. 105 329–336 Occurrence Handle3740673 Occurrence Handle1:STN:280:BimB1MvgtFA%3D

    PubMed  CAS  Google Scholar 

  • Numerical Recipes. Cambridge University Press. http://www.nr.com/

  • A. J. Boeckmann, S. L. Beal, and L. B. Sheiner. NONMEM V Users Guides, (1998)

  • C. Cobelli A. Lepschy G.R. Jacur (1979) ArticleTitleIdentifiability of Compartmental systems and related structural properties Math. Biosci. 44 1–18 Occurrence Handle10.1016/0025-5564(79)90026-9

    Article  Google Scholar 

  • G. Segre (1968) ArticleTitleKinetics of interaction between drugs and biological systems Il Farmaco 23 907–918 Occurrence Handle1:CAS:528:DyaF1MXhtVagsA%3D%3D

    CAS  Google Scholar 

  • D. Verotta (1996) ArticleTitleConcepts, properties, and applications of linear systems to describe the distribution, indentify input, and control endogenous substances and drugs in biological systems Criti. Rev. Bioeng. 24 73–139 Occurrence Handle1:STN:280:ByiB283nsFI%3D

    CAS  Google Scholar 

  • N.L. Dayneka V. Garg W.J. Jusko (1993) ArticleTitleComparison of four basic models of indirect pharmacodynamic responses J. Pharmacokinet. Biop. 21 457–478 Occurrence Handle1:CAS:528:DyaK2cXitlGhsb0%3D

    CAS  Google Scholar 

  • D. Kang et al. (2003) ArticleTitlePopulation analyses of sustained-release verapamil in patients: Effects of sex, race, and smoking Clini. Pharmacol. Ther. 73 31–40 Occurrence Handle1:CAS:528:DC%2BD3sXhtlKgtrY%3D

    CAS  Google Scholar 

  • J.J. Jacquez P. Greif (1985) ArticleTitleNumerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design Math. Biosci. 77 201–227

    Google Scholar 

  • E. Walter L. Pronzato (1987) ArticleTitleOptimal experiment design for nonlinear models subject to large prior uncertainties Am. J. Physiol. 253 R530–R534 Occurrence Handle3631311 Occurrence Handle1:STN:280:BiiA38zmsFE%3D

    PubMed  CAS  Google Scholar 

  • M. Tod M. Mentre F. Merle Y. Mallet (1998) ArticleTitleA Robust optimal design for the estimation of hyperparameters in population pharmacokinetics 26 689–716 Occurrence Handle1:CAS:528:DyaK1MXjvVCmt7w%3D

    CAS  Google Scholar 

  • E.M. Landaw (1985) in Variability in Drug Therapy: Description, estimation, and control Raven Press New York 187–200

    Google Scholar 

  • S. Retout F. Mentre (2003) ArticleTitleOptimization of Individual and Population Designs using Splus J. Pharmacokinet Phar. 30 417–443

    Google Scholar 

  • U. Wahlby M.R. Bouw E.N. Jonsson M.O. Karlsson (2002) ArticleTitleAssessment of type I error rates for the statistical sub-model in NONMEM J. Pharmacokinet Phar. 29 251–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Verotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, D., Schwartz, J.B. & Verotta, D. Sample Size Computations for PK/PD Population Models. J Pharmacokinet Pharmacodyn 32, 685–701 (2005). https://doi.org/10.1007/s10928-005-0078-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-005-0078-3

Keywords

Navigation