Skip to main content

Advertisement

Log in

Nanochitosan Reinforced Polyvinyl Alcohol/Cashew Gum Bio-blend Nanocomposites: Promising Materials for Future Frontiers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Herein, biopolymer nanocomposite films were prepared from the blend of two polymers, polyvinyl alcohol (PVA) and cashew gum (CG), incorporated with various concentrations of nanochitosan (nCS) via the green solution casting method. The effects of nCS on the structural, morphological, mechanical, thermal and electrical/dielectric characteristics of the PVA/CG blend have been investigated and discussed. The major absorption peaks of PVA and CG were revealed by the Fourier transform infrared study, and their positions slightly changed with the insertion of nCS. X-ray diffraction results revealed that the crystallinity degree of the nanocomposite samples increased with increasing nCS content. The consistent distribution of chitosan nanofillers in the blend network was visible in the scanning electron microscopy images. Differential scanning calorimetry and thermogravimetric analysis showed that increasing the nanofiller loading into the PVA/CG increased the glass transition temperature and thermal stability. The electrical impedance measurements showed that the nanofiller loading increases the electrical conductivity and dielectric properties. The AC conductivity of PVA/CG/7wt% nCS was 1.46 times higher than the pure blend. The activation energy of electrical conductivity decreases as temperature increases, and the PVA/CG/7wt% nCS sample had the lowest activation energy of conduction (0.3495 eV). The semiconducting behaviour of the blend nanocomposites was explained by the skewed semi-circular arc observed in Nyquist plots. The tensile strength of 5wt% nCS loaded blend was 43.2% higher than the pure PVA/CG blend. These results suggest that this blend nanocomposite films could be a candidate for capacitors and flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. El Gohary HG, Qahtan TF, Alharbi HG, Asnag GM, Waly AL (2023) Studies of the structural, optical, thermal, electrical and dielectric properties of a polyvinyl alcohol/Sodium alginate blend doped with Cu nanoparticles and ZnO nanorods as hybrid nanofillers for use in energy storage devices. J Polym Environ. https://doi.org/10.1007/s10924-023-02785-2

    Article  Google Scholar 

  2. Gasti T, Hiremani VD, Kesti SS, Vanjeri VN, Goudar N, Masti SP, Thimmappa SC, Chougale RB (2021) Physicochemical and antibacterial evaluation of poly (vinyl alcohol)/guar gum/silver nanocomposite films for food packaging applications. J Polym Environ 29:3347–3363. https://doi.org/10.1007/s10924-021-02123-4

    Article  CAS  Google Scholar 

  3. Hajji S, Ktari N, Ben SR, Boufi S, Debeaufort F, Nasri M (2022) Development of nanocomposite films based on chitosan and gelatin loaded with chitosan-tripolyphosphate nanoparticles: antioxidant potentials and applications in wound healing. J Polym Environ 30:833–854. https://doi.org/10.1007/s10924-021-02239-7

    Article  CAS  Google Scholar 

  4. Chomachayi MD, Jalali-arani A, Urreaga JM (2021) A comparison of the effect of silk fibroin nanoparticles and microfibers on the reprocessing and biodegradability of PLA/PCL blends. J Polym Environ 29:2585–2597. https://doi.org/10.1007/s10924-021-02053-1

    Article  CAS  Google Scholar 

  5. Meera K, Ramesan MT (2023) Development of high-performance biopolymer nanocomposites derived from carboxymethyl chitosan/boehmite via green synthesis. Polym Compos 44:1135–1148. https://doi.org/10.1002/pc.27159

    Article  CAS  Google Scholar 

  6. Abdullah OG, Hanna RR, Ahmed HT, Mohamad AH, Saleem SA, Saeed MA (2021) Conductivity and dielectric properties of lithium-ion biopolymer blend electrolyte-based film. Results Phys 24:104135. https://doi.org/10.1016/j.rinp.2021.104135

    Article  Google Scholar 

  7. Hu W, Zou Z, Li H, Zhang Z, Yu J, Tang Q (2022) Fabrication of highly transparent and multifunctional polyvinyl alcohol/starch-based nanocomposite films using zinc oxide nanoparticles as compatibilizers. Int J Biol Macromol 204:284–292. https://doi.org/10.1016/j.ijbiomac.2022.02.020

    Article  CAS  PubMed  Google Scholar 

  8. Suvarna S, Furhan RMT (2023) Structural, conductivity, mechanical and wettability properties of copper alumina reinforced chlorinated polyethylene/polyvinyl chloride blend nanocomposites. Res Chem Intermed 49:1891–1908. https://doi.org/10.1007/s11164-022-04881-9

    Article  CAS  Google Scholar 

  9. Abdulwahid RT, Aziz BS, Kadir MF (2022) Design of proton conducting solid biopolymer blend electrolytes based on chitosan-potato starch biopolymers: deep approaches to structural and ion relaxation dynamics of H+ ion. J Appl Polym Sci 139:e52892. https://doi.org/10.1002/app.52892

    Article  CAS  Google Scholar 

  10. Abdulwahid RT, Aziz SB, Kadir MF (2022) Insights into ion transport in biodegradable solid polymer blend electrolyte based on FTIR analysis and circuit design. J Phys Chem Solids 167:110774. https://doi.org/10.1016/j.jpcs.2022.110774

    Article  CAS  Google Scholar 

  11. Swapna VP, Krishnan M, Abhisha VS, Stephen R (2021) Efficient cage structured polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol) membranes: Thermal degradation and mechanical stability in hydrated condition. J Appl Polym Sci 138:e51377. https://doi.org/10.1002/app.51377

    Article  CAS  Google Scholar 

  12. Meera K, Ramesan MT (2023) Performance of boehmite nanoparticles reinforced carboxymethyl chitosan/polyvinyl alcohol blend nanocomposites tailored through green synthesis. J Polym Environ 31:447–460. https://doi.org/10.1007/s10924-022-02649-1

    Article  CAS  Google Scholar 

  13. Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56:1307–1344. https://doi.org/10.1080/03602559.2016.1275684

    Article  CAS  Google Scholar 

  14. Xu J, Jiang XS, Peng L, Wang Y, Shang S, Miao D, Guo R (2019) AgNps-PVA–coated woven cotton fabric: preparation, water repellency, shielding properties and antibacterial activity. J Ind Text 48:1545–1565. https://doi.org/10.1177/1528083718764908

    Article  CAS  Google Scholar 

  15. Porto BC, Augusto PED, Cristianini M (2015) Comparative study between technological Properties of cashew tree gum and Arabic gum. J Polym Environ 23:392–399. https://doi.org/10.1007/s10924-014-0698-z

    Article  CAS  Google Scholar 

  16. de Azevedo GA, Heinrichs MC, Moraes ÂM (2022) Cashew tree gum for biomaterials engineering: a versatile raw material in consolidation. J Appl Polym Sci 139:e52484. https://doi.org/10.1002/app.52484

    Article  CAS  Google Scholar 

  17. Mochane MJ, Sefadi JS, Motsoeneng TS, Mokoena TE, Mofokeng TG, Mokhena TC (2020) The effect of filler localization on the properties of biopolymer blends, recent advances: a review. Polym Compos 41:2958–2979. https://doi.org/10.1002/pc.25590

    Article  CAS  Google Scholar 

  18. Ramesan MT, Subburaj M, Mathew G, Bahuleyan BK (2023) Utilization of copper sulphide nanoparticles for the development of cashew tree gum/ chitin biopolymer blend nanocomposites. J Thermoplast Compos Mater 36:984–1003. https://doi.org/10.1177/08927057211046282

    Article  CAS  Google Scholar 

  19. Migdadi AB, Ahmad AA, Alsaad AM, Telfah A (2022) Synthesis, optoelectronic and thermal characterization of PMMA-MWCNTs nanocomposite thin films incorporated by ZrO2 NPs. J Mater Sci Mater Electron 33:5087–5104. https://doi.org/10.1007/s10854-022-07699-8

    Article  CAS  Google Scholar 

  20. Hidangmayum A, Dwivedi P (2022) Chitosan based nanoformulation for sustainable agriculture with special Reference to abiotic stress: a review. J Polym Environ 30:1264–1283. https://doi.org/10.1007/s10924-021-02296-y

    Article  CAS  Google Scholar 

  21. Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW (2022) Chitosan based bio-adhesives for biomedical applications: a review. Carbohydr Polym 282:119100. https://doi.org/10.1016/j.carbpol.2022.119100

    Article  CAS  PubMed  Google Scholar 

  22. Begum ERA, Rajaiah S, Bhavani K, Devi M, Karthika K, Priya CG (2017) Evaluation of extracted chitosan from portunus pelagicus for the preparation of chitosan alginate blend scaffolds. J Polym Environ 25:578–585. https://doi.org/10.1007/s10924-016-0834-z

    Article  CAS  Google Scholar 

  23. Selim SE, Meligi GA, Abdelhamid AE, Mabrouk MA, Hussain AI (2022) Novel composite films based on acrylic fibers waste/nano-chitosan for congo red adsorption. J Polym Environ 30:2642–2657. https://doi.org/10.1007/s10924-022-02378-5

    Article  CAS  Google Scholar 

  24. Cazón P, Vázquez M, Velazquez G (2018) Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym Test 69:536–544. https://doi.org/10.1016/j.polymertesting.2018.06.016

    Article  CAS  Google Scholar 

  25. Srinivasa P, Ramesh M, Kumar K, Tharanathan R (2003) Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydr Polym 53:431–438. https://doi.org/10.1016/S0144-8617(03)00105-X

    Article  CAS  Google Scholar 

  26. Shyly PM, Sridevi NA, Premkumar PS (2022) Thermal and mechanical studies of nanochitosan incorporated polymethyl methacrylate-based composite electrolytes. J Eng Appl Sci 69:26. https://doi.org/10.1186/s44147-022-00077-5

    Article  Google Scholar 

  27. Moreira BR, Pereira-Junior MA, Fernandes KF, Batista KA (2020) An ecofriendly edible coating using cashew gum polysaccharide and polyvinyl alcohol. Food Biosci 37:100722. https://doi.org/10.1016/j.fbio.2020.100722

    Article  CAS  Google Scholar 

  28. Wang X, Hu Y, Zhang Z, Zhang B (2022) The application of thymol-loaded chitosan nanoparticles to control the biodeterioration of cultural heritage sites. J Cult Herit 53:206–211. https://doi.org/10.1016/j.culher.2021.12.002

    Article  Google Scholar 

  29. Martins CS, Morgado DL, Assis OB (2016) Cashew gum-chitosan blended films: spectral, mechanical and surface. Macromol Res 24:691–697. https://doi.org/10.1007/s13233-016-4103-8

    Article  CAS  Google Scholar 

  30. Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37:1921–1927. https://doi.org/10.1021/ma035663q

    Article  CAS  Google Scholar 

  31. Olorunsola EO, Bhatia PG, Tytler BA, Adikwu MU (2016) Thermochemical properties of hydrophilic polymers from cashew and khaya exudates and their implications on drug delivery. J Drug Deliv. https://doi.org/10.1155/2016/7496585

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shetta A, Kegere J, Mamdouh W (2019) Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol 126:731–742. https://doi.org/10.1016/j.ijbiomac.2018.12.161

    Article  CAS  PubMed  Google Scholar 

  33. Ramesan MT, Jose C, Jayakrishnan P, Anilkumar T (2018) Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polym Compos 39:38–45. https://doi.org/10.1002/pc.23899

    Article  CAS  Google Scholar 

  34. Al-Muntaser AA, Pashameah RA, Saeed A, Alwafi R, Alzahrani E, AlSubhi SA, Yassin AY (2023) Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J Mater Sci Mater Electron 34:678. https://doi.org/10.1007/s10854-023-10104-7

    Article  CAS  Google Scholar 

  35. Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S (2021) Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Package Shelf Life 30:100742. https://doi.org/10.1016/j.fpsl.2021.100742

    Article  CAS  Google Scholar 

  36. Soliman TS, Vshivkov SA (2019) Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J Non-Cryst Solids 519:119452. https://doi.org/10.1016/j.jnoncrysol.2019.05.028

    Article  CAS  Google Scholar 

  37. Moghadam A, Mobarakeh MS, Safaei M, Kariminia S (2021) Synthesis and characterization of novel bio-nanocomposite of polyvinyl alcohol-Arabic gum-magnesium oxide via direct blending method. Carbohydr Polym 260:117802. https://doi.org/10.1016/j.carbpol.2021.117802

    Article  CAS  PubMed  Google Scholar 

  38. Khalili H, Hamid Salim M, Tlemcani S, Makhlouf R, Hassani FZ, Ablouh H, Kassab Z, El Achaby M (2022) Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/alginate polymer blend. J Fibers Polym Compos 1:77–96. https://doi.org/10.55043/jfpc.v1i2.56

    Article  Google Scholar 

  39. Parvathi K, Ramesan MT (2023) Tailoring the structural, electrical and thermal properties of zinc oxide reinforced chlorinated natural rubber/poly (indole) blend nanocomposites for flexible electrochemical devices. J Polym Res 30:55. https://doi.org/10.1007/s10965-022-03427-2

    Article  CAS  Google Scholar 

  40. El Miri N, Abdelouahdi K, Zahouily M, Fihri A, Barakat A, Solhy A, El Achaby M (2015) Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend. J Appl Polym Sci 132:42004. https://doi.org/10.1002/app.42004

    Article  CAS  Google Scholar 

  41. Sankar S, Ramesan MT (2022) Thermal, optical and temperature dependent electrical properties poly(aniline-co-pyrrole)/ copper alumina nanocomposites for optoelectronic devices. J Therm Anal Calorim 147:13375–13387. https://doi.org/10.1007/s10973-022-11670-4

    Article  CAS  Google Scholar 

  42. Suvarna S, Niranjana VS, Subburaj M, Ramesan MT (2022) Temperature-dependent conductivity, optical properties, thermal stability and dielectric modelling studies of Cu-Al2O3/CPE/PVC blend nanocomposites. Bull Mater Sci 45:246. https://doi.org/10.1007/s12034-022-02829-8

    Article  CAS  Google Scholar 

  43. Alghamdi HM, Abutalib MM, Rajeh A, Mannaa MA, Nur O, Abdelrazek EM (2022) Effect of the Fe2O3/TiO2 nanoparticles on the structural, mechanical, electrical properties and antibacterial activity of the biodegradable chitosan/polyvinyl alcohol blend for food packaging. J Polym Environ 30:3865–3874. https://doi.org/10.1007/s10924-022-02478-2

    Article  CAS  Google Scholar 

  44. Meera K, Ramesan MT (2023) Tailoring the performance of boehmite nanoparticles reinforced carboxymethyl chitosan/cashew gum blend nanocomposites via green synthesis. Polymer 268:125706. https://doi.org/10.1016/j.polymer.2023.125706

    Article  CAS  Google Scholar 

  45. Alsulami QA, Rajeh A (2021) Synthesis of the SWCNTs/TiO2 nanostructure and its effect study on the thermal, optical, and conductivity properties of the CMC/PEO blend. Results Phys 28:104675. https://doi.org/10.1016/j.rinp.2021.104675

    Article  Google Scholar 

  46. Rajeswari N, Selvasekarapandian S, Sanjeeviraja C, Kawamura J, Asath Bahadur S (2014) A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym Bull 71:1061–1080. https://doi.org/10.1007/s00289-014-1111-8

    Article  CAS  Google Scholar 

  47. Abdelrazek EM, Abdelghany AM, Tarabiah AE, Zidan HM (2019) AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J Mater Sci Mater Electron 30:15521–15533. https://doi.org/10.1007/s10854-019-01929-2

    Article  CAS  Google Scholar 

  48. Rajesh K, Crasta V, Rithin Kumar NB, Shetty G, Rekha PD (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26:99. https://doi.org/10.1007/s10965-019-1762-0

    Article  CAS  Google Scholar 

  49. Yassin AY (2020) Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium batteries. J Mater Sci Mater Electron 31:19447–19463. https://doi.org/10.1007/s10854-020-04478-1

    Article  CAS  Google Scholar 

  50. Alharbi EM, Rajeh A (2022) Tailoring the structural, optical, dielectric, and electrical properties of PEO/PVA blend using graphene nanoplates for energy storage devices. J Mater Sci Mater Electron 33:22196–22207

    Article  CAS  Google Scholar 

  51. Parvathi K, Ramesan MT (2023) Effect of titanium dioxide on the structural, thermal and electrical properties of chlorinated natural rubber/poly (indole) blend nanocomposites for flexible nanoelectronics devices. J Appl Polym Sci 140:e53621. https://doi.org/10.1002/app.53621

    Article  CAS  Google Scholar 

  52. Yassin AY, Abdelghany AM (2021) Synthesis and thermal stability, electrical conductivity and dielectric spectroscopic studies of poly (ethylene-co-vinyl alcohol)/graphene oxide nanocomposite. Phys B Condens Matter 608:412730. https://doi.org/10.1016/j.physb.2020.412730

    Article  CAS  Google Scholar 

  53. Gami F, Algethami N, Ragab HM, Tarabiah AE (2022) Structural, optical and electrical studies of chitosan/polyacrylamide blend filled with synthesized selenium nanoparticles. J Mol Struct 1257:132631. https://doi.org/10.1016/j.molstruc.2022.132631

    Article  CAS  Google Scholar 

  54. Furhan SS, Ramesan MT (2022) Optical and electrical properties of copper alumina nanoparticles reinforced chlorinated polyethylene composites for optoelectronic devices. J Indian Chem Soc 99:100772. https://doi.org/10.1016/j.jics.2022.100772

    Article  CAS  Google Scholar 

  55. Marf AS, Abdullah RM, Aziz SB (2020) Structural, morphological, electrical and electrochemical properties of PVA: CS-based proton-conducting polymer blend electrolytes. Membranes 10:71. https://doi.org/10.3390/membranes10040071

    Article  CAS  Google Scholar 

  56. Mobarak NN, Ahmad A, Abdullah MP, Ramli N, Rahman MY (2013) Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim Acta 92:161–167. https://doi.org/10.1016/j.electacta.2012.12.126

    Article  CAS  Google Scholar 

  57. Takkalkar P, Griffin G, Kao N (2019) Enhanced mechanical and barrier performance of poly (Lactic Acid) based nanocomposites using surface acetylated starch nanocrystals. J Polym Environ 27:2078–2088. https://doi.org/10.1007/s10924-019-01484-1

    Article  CAS  Google Scholar 

  58. Pereira R, Tojeira A, Vaz DC, Mendes A, Bártolo P (2011) Preparation and characterization of films based on alginate and aloe vera. Int J Polym Anal Charact 16:449–464. https://doi.org/10.1080/1023666X.2011.599923

    Article  CAS  Google Scholar 

  59. Suvarna S, Furhan PK, Ramesan MT (2023) Role of copper alumina nanoparticles on the performance of polyvinylchloride nanocomposites. J Vinyl Addt Technol 29:17–28. https://doi.org/10.1002/vnl.21939

    Article  CAS  Google Scholar 

  60. Rajabinejad H, Zoccola M, Patrucco A, Montarsolo A, Chen Y, Ferri A, Muresan A, Tonin C (2020) Fabrication and properties of keratoses/polyvinyl alcohol blend films. Polym Bull 77:3033–3046. https://doi.org/10.1007/s00289-019-02889-7

    Article  CAS  Google Scholar 

Download references

Funding

The author (K. Meera) gratefully acknowledges the financial support provided by University Grants Commission (UGC), India to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. KM contributed to the material preparation, analysis and writing of the manuscript, KA performed material preparation, data collection, while MTR contributed to the conception, resources, validation, writing, review and editing.

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meera, K., Arun, K. & Ramesan, M.T. Nanochitosan Reinforced Polyvinyl Alcohol/Cashew Gum Bio-blend Nanocomposites: Promising Materials for Future Frontiers. J Polym Environ 31, 4487–4505 (2023). https://doi.org/10.1007/s10924-023-02909-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02909-8

Keywords

Navigation